On fractional Hardy-type inequalities in general open sets
We show that, when sp > N , the sharp Hardy constant h s,p of the punctured space ℝ N \ {0} in the Sobolev–Slobodeckiĭ space provides an optimal lower bound for the Hardy constant h s,p (Ω) of an open set Ω ⊂ ℝ N . The proof exploits the characterization of Hardy’s inequality in the fractional se...
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2024-10, Vol.30, p.77 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that, when
sp
>
N
, the sharp Hardy constant
h
s,p
of the punctured space ℝ
N
\ {0} in the Sobolev–Slobodeckiĭ space provides an optimal lower bound for the Hardy constant
h
s,p
(Ω) of an open set Ω ⊂ ℝ
N
. The proof exploits the characterization of Hardy’s inequality in the fractional setting in terms of positive local weak supersolutions of the relevant Euler–Lagrange equation and relies on the construction of suitable supersolutions by means of the distance function from the boundary of Ω. Moreover, we compute the limit of
h
s,p
as
s
↗ 1, as well as the limit when
p
↗ ∞. Finally, we apply our results to establish a lower bound for the non-local eigenvalue λ
s,p
(Ω) in terms of
h
s,p
when
sp
>
N
, which, in turn, gives an improved Cheeger inequality whose constant does not vanish as
p
↗ ∞. |
---|---|
ISSN: | 1292-8119 1262-3377 |
DOI: | 10.1051/cocv/2024066 |