Higher differentiability results in the scale of Besov Spaces to a class of double-phase obstacle problems
We study the higher fractional differentiability properties of the gradient of the solutions to variational obstacle problems of the form $\min \left\{ {\int_\Omega {F\left( {x,w,Dw} \right){\rm{d}}x\,:\,w\, \in \,{\kappa _\psi }\left( \Omega \right)} } \right\},$ with F double phase functional of t...
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2022-08, Vol.28, p.51 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the higher fractional differentiability properties of the gradient of the solutions to variational obstacle problems of the form
$\min \left\{ {\int_\Omega {F\left( {x,w,Dw} \right){\rm{d}}x\,:\,w\, \in \,{\kappa _\psi }\left( \Omega \right)} } \right\},$
with
F
double phase functional of the form
$F\left( {x,\,w,\,z} \right) = b\left( {x,w} \right)\left( {{{\left| z \right|}^p} + a\left( x \right){{\left| z \right|}^q}} \right),$
where Ω is a bounded open subset of ℝ
n
, ψ ∈
W
1,p
(Ω) is a fixed function called obstacle and = {
w
∈
W
1,P
(Ω) :
w
≥ ψ a.e. in Ω} is the class of admissible functions. Assuming that the gradient of the obstacle belongs to a suitable Besov space, we are able to prove that the gradient of the solution preserves some fractional differentiability property. |
---|---|
ISSN: | 1292-8119 1262-3377 |
DOI: | 10.1051/cocv/2022050 |