Convergence of the natural p -means for the p -Laplacian

We prove uniform convergence in Lipschitz domains of approximations to p -harmonic functions obtained using the natural p -means introduced by Ishiwata, Magnanini, and Wadade [ Calc. Var. Partial Differ. Equ. 56 (2017) 97]. We also consider convergence of natural means in the Heisenberg group in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2021, Vol.27, p.33
Hauptverfasser: Manfredi, Juan J., Stroffolini, Bianca
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove uniform convergence in Lipschitz domains of approximations to p -harmonic functions obtained using the natural p -means introduced by Ishiwata, Magnanini, and Wadade [ Calc. Var. Partial Differ. Equ. 56 (2017) 97]. We also consider convergence of natural means in the Heisenberg group in the case of smooth domains.
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv/2021026