Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry

We consider a series of optimal control problems with 2-dimensional control lying in an arbitrary convex compact set Ω. The considered problems are well studied for the case when Ω is a unit disc, but barely studied for arbitrary Ω. We derive extremals to these problems in general case by using mach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2021, Vol.27, p.32
Hauptverfasser: Ardentov, A.A., Lokutsievskiy, L.V., Sachkov, Yu.L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a series of optimal control problems with 2-dimensional control lying in an arbitrary convex compact set Ω. The considered problems are well studied for the case when Ω is a unit disc, but barely studied for arbitrary Ω. We derive extremals to these problems in general case by using machinery of convex trigonometry, which allows us to do this identically and independently on the shape of Ω. The paper describes geodesics in (i) the Finsler problem on the Lobachevsky hyperbolic plane; (ii) left-invariant sub-Finsler problems on all unimodular 3D Lie groups (SU(2), SL(2), SE(2), SH(2)); (iii) the problem of rolling ball on a plane with distance function given by Ω; (iv) a series of “yacht problems” generalizing Euler’s elastic problem, Markov-Dubins problem, Reeds-Shepp problem and a new sub-Riemannian problem on SE(2); and (v) the plane dynamic motion problem.
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv/2021024