VLA radio continuum observations of a new sample of high redshift radio galaxies

We present new deep multi-frequency radio-polarimetric images of a sample of high redshift radio galaxies (HzRGs), having redshift between 1.7 and 4.1. The radio data at 4.7 and 8.2 GHz were taken with the Very Large Array in the A configuration and provide a highest angular resolution of 0.2″. Maps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy & astrophysics. Supplement series 2000-07, Vol.145 (1), p.121-159
Hauptverfasser: Pentericci, L., Van Reeven, W., Carilli, C. L., Röttgering, H. J.A., Miley, G. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present new deep multi-frequency radio-polarimetric images of a sample of high redshift radio galaxies (HzRGs), having redshift between 1.7 and 4.1. The radio data at 4.7 and 8.2 GHz were taken with the Very Large Array in the A configuration and provide a highest angular resolution of 0.2″. Maps of total intensity, radio spectral index, radio polarization and internal magnetic field are presented for each source. 
The morphology of most objects is that of standard FRII double radio sources, but several contain multiple hot-spots in one or both lobes. Compared to similar samples of HzRGs previously imaged, there is a higher fraction (29%) of compact steep spectrum sources (i.e. sources with a projected linear size less than 20 kpc). Radio cores are identified in about half of the sample and tend to have relatively steep spectra ($\alpha \le -1$). 
Polarization is detected in all but 4 sources, with typical polarization at 8.2 GHz of around 10-20%. The Faraday rotation can be measured in most of the radio galaxies: the observed rotation measure (RM) of 8 radio sources exceeds 100 rad m-2 in at least one of the lobes, with large gradients between the two lobes. We find no dependence of Faraday rotation with other properties of the radio sources. If the origin of the Faraday rotation is local to the sources, as we believe, then the intrinsic RM is more than a 1000 rad m-2. Because low redshift radio galaxies residing at the center of clusters usually show extreme RMs, we suggest that the high-z large RM sources also lie in very dense environments. 
Finally, we find that the fraction of powerful radio galaxies with extreme Faraday rotation increases with redshift, as would be expected if their average environment tends to become denser with decreasing cosmic epoch. However this result has to be taken with caution, given the limitations of our analysis.
ISSN:0365-0138
1286-4846
DOI:10.1051/aas:2000104