Planet-star interactions with precise transit timing. IV. Probing the regime of dynamical tides for GK host stars

Giant exoplanets on 1--3 day orbits, known as ultra-hot Jupiters, induce detectable tides in their host stars. The energy of those tides dissipates at a rate related to the properties of the stellar interior. At the same time, a planet loses its orbital angular momentum and spirals into the host sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2024-12
Hauptverfasser: Maciejewski, G., Golonka, J., Fernandez, M., Ohlert, J., Casanova, V., Perez Medialdea, D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Giant exoplanets on 1--3 day orbits, known as ultra-hot Jupiters, induce detectable tides in their host stars. The energy of those tides dissipates at a rate related to the properties of the stellar interior. At the same time, a planet loses its orbital angular momentum and spirals into the host star. The decrease in the orbital period is empirically accessible with precise transit timing and can be used to probe planet-star tidal interactions. Statistical studies show that stars of GK spectral types, with masses below 1.1 $M_ odot $, are depleted in hot Jupiters. This finding is evidence of tidal orbital decay during the main-sequence lifetime. Theoretical considerations show that in some configurations the tidal energy dissipation can be boosted by non-linear effects in dynamical tides, which are wave-like responses to tidal forcing. To probe the regime of these dynamical tides in GK stars, we searched for orbital period shortening for six selected hot Jupiters in systems with 0.8--1 $M_ odot $ host stars: HATS-18, HIP 65A, TrES-3, WASP-19, WASP-43, and WASP-173A. For the hot Jupiters in our sample, we analysed transit timing datasets based on mid-transit points homogeneously determined from observations performed with the Transiting Exoplanet Survey Satellite and high-quality data available in the literature. For the TrES-3 system, we also used new transit light curves we acquired with ground-based telescopes. We searched mid-transit times for shortening of orbital periods by statistically testing quadratic transit ephemerides. Theoretical predictions on the dissipation rate for dynamical tides were calculated under the regimes of internal gravity waves (IGWs) undergoing wave breaking (WB) in stellar centres and weak non-linear (WNL) wave-wave interactions in radiative layers. Stellar parameters of the host stars, such as mass and age, which were used in those computations, were homogeneously redetermined using evolutionary models with the Bayesian inference. We found that transit times follow the refined linear ephemerides for all ultra-hot Jupiters of our sample. The non-detection of orbital decay allowed us to place lower constraints on the tidal dissipation rates in those planet-star systems. In three systems, HATS-18, WASP-19, and WASP-43, we reject a scenario with total dissipation of IGWs. We conclude that their giant planets are not massive enough to induce WB. Our observational constraints for HIP 65A, TrES-3, and WASP-173A are too weak to prob
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/202452101