Solar Activity Relations in Energetic Electron Events Measured By the MESSENGER Mission

Aims. We perform a statistical study of the relations between the properties of solar energetic electron (SEE) events measured by the MESSENGER mission from 2010 to 2015 and the parameters of the respective parent solar activity phenomena in order to identify the potential correlations between them....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and Astrophysics 2023-06, Vol.674, p.A145
Hauptverfasser: Rodríguez-García, L., Balmaceda, L. A., Gómez-Herrero, R., Kouloumvakos, A., Dresing, N., Lario, D., Zouganelis, I., Fedeli, A., Lara, F. Espinosa, Cernuda, I., Ho, G. C., Wimmer-Schweingruber, R. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims. We perform a statistical study of the relations between the properties of solar energetic electron (SEE) events measured by the MESSENGER mission from 2010 to 2015 and the parameters of the respective parent solar activity phenomena in order to identify the potential correlations between them. During the time of analysis, the MESSENGER heliocentric distance varied between 0.31 and 0.47 au. Methods. We used a published list of 61 SEE events measured by MESSENGER, which includes information on the near-relativistic electron peak intensities, the peak-intensity energy spectral indices, and the measured X-ray peak intensity of the flares related to the SEE events. Taking advantage of multi-viewpoint remote-sensing observations, we reconstructed, whenever possible, the associated coronal mass ejections (CMEs) and shock waves; and we determined the three-dimensional (3D) properties (location, speed, and width) of the CMEs and the maximum speed of the 3D CME-driven shocks in the corona. We used different methods (Spearman, Pearson, and a Bayesian approach, namely the Kelly method to linear regression) to estimate the correlation coefficients between the flare intensity, maximum speed at the apex of the CME-driven shock, CME speed at the apex, and CME width with the electron peak intensities and with the energy spectral indices. In this statistical study, we considered and addressed the limitations of the particle instrument on board MESSENGER (elevated background intensity level, anti-Sun pointing). Results. There is an asymmetry to the east in the range of connection angles (CAs) for which the SEE events present the highest peak intensities, where the CA is the longitudinal separation between the footpoint of the magnetic field connecting to the spacecraft and the flare location. Based on this asymmetry, we define a subsample of well-connected events as when −65° ≤ CA ≤ +33°. For the well-connected sample, we find moderate to strong correlations between the near-relativistic electron peak intensity and the 3D CME-driven shock maximum speed at the apex (Spearman: cc = 0.53 ± 0.05; Pearson: cc = 0.65 ± 0.04; Kelly: cc = 0.87 ± 0.20), the flare peak intensity (Spearman: cc = 0.63 ± 0.03; Pearson: cc = 0.59 ± 0.03; Kelly: cc = 0.74 ± 0.30), and the 3D CME speed at the apex (Spearman: cc = 0.50 ± 0.04; Pearson: cc = 0.46 ± 0.03; Kelly: cc = 0.60 ± 0.39). When including poorly connected events (full sample), the relations between the peak intensities and the sol
ISSN:2329-1273
0004-6361
2329-1265
1432-0746
DOI:10.1051/0004-6361/202245604