Inferring properties of dust in supernovae with neural networks
Context. Determining properties of dust that formed in and around supernovae from observations remains challenging. This may be due to either incomplete coverage of data in wavelength or time, but also due to often inconspicuous signatures of dust in the observed data. Aims. Here we address this cha...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2022-10, Vol.666, p.A176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context.
Determining properties of dust that formed in and around supernovae from observations remains challenging. This may be due to either incomplete coverage of data in wavelength or time, but also due to often inconspicuous signatures of dust in the observed data.
Aims.
Here we address this challenge using modern machine learning methods to determine the amount and temperature of dust as well as its composition from a large set of simulated data. We aim to quantify if such methods are suitable to infer quantities and properties of dust from future observations of supernovae.
Methods.
We developed a neural network consisting of eight fully connected layers and an output layer with specified activation functions that allowed us to predict the dust mass, temperature, and composition as well as their respective uncertainties for each single supernova of a large set of simulated supernova spectral energy distributions (SEDs). We produced the large set of supernova SEDs for a wide range of different supernovae and dust properties using the advanced, fully three-dimensional radiative transfer code MOCASSIN. We then convolved each SED with the entire suite of
James Webb
Space Telescope (JWST) bandpass filters to synthesise a photometric data set. We split this data set into three subsets which were used to train, validate, and test the neural network. To find out how accurately the neural network can predict the dust mass, temperature, and composition from the simulated data, we considered three different scenarios. First, we adopted a uniform distance of ~0.43 Mpc for all simulated SEDs. Next we uniformly distributed all simulated SEDs within a volume of 0.43–65 Mpc and, finally, we artificially added random noise corresponding to a photometric uncertainty of 0.1 mag. Lastly, we conducted a feature importance analysis via SHapley Additive explanations (SHAP) to find the minimum set of JWST bandpass filters required to predict the selected dust quantities with an accuracy that is comparable to standard methods in the literature.
Results
. We find that our neural network performs best for the scenario in which all SEDs are at the same distance and for a minimum subset of seven JWST bandpass filters within a wavelength range 3−25 µm. This results in rather small root-mean-square errors (RMSEs) of ~0.08 dex and ~42 K for the most reliable predicted dust masses and temperatures, respectively. For the scenario in which SEDs are distributed out to 65 Mpc and contai |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/202243078 |