Morphology-assisted galaxy mass-to-light predictions using deep learning
Context. One of the most important properties of a galaxy is the total stellar mass, or equivalently the stellar mass-to-light ratio (M/L). It is not directly observable, but can be estimated from stellar population synthesis. Currently, a galaxy’s M/L is typically estimated from global fluxes. For...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2019-04, Vol.624, p.A102 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context. One of the most important properties of a galaxy is the total stellar mass, or equivalently the stellar mass-to-light ratio (M/L). It is not directly observable, but can be estimated from stellar population synthesis. Currently, a galaxy’s M/L is typically estimated from global fluxes. For example, a single global g − i colour correlates well with the stellar M/L. Spectral energy distribution (SED) fitting can make use of all available fluxes and their errors to make a Bayesian estimate of the M/L. Aims. We want to investigate the possibility of using morphology information to assist predictions of M/L. Our first goal is to develop and train a method that only requires a g-band image and redshift as input. This will allows us to study the correlation between M/L and morphology. Next, we can also include the i-band flux, and determine if morphology provides additional constraints compared to a method that only uses g- and i-band fluxes. Methods. We used a machine learning pipeline that can be split in two steps. First, we detected morphology features with a convolutional neural network. These are then combined with redshift, pixel size and g-band luminosity features in a gradient boosting machine. Our training target was the M/L acquired from the GALEX-SDSS-WISE Legacy Catalog, which uses global SED fitting and contains galaxies with z ∼ 0.1. Results. Morphology is a useful attribute when no colour information is available, but can not outperform colour methods on its own. When we combine the morphology features with global g- and i-band luminosities, we find an improved estimate compared to a model which does not make use of morphology. Conclusions. While our method was trained to reproduce global SED fitted M/L, galaxy morphology gives us an important additional constraint when using one or two bands. Our framework can be extended to other problems to make use of morphological information. |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/201834575 |