Accurate stellar rotational velocities using the Fourier transform of the cross correlation maximum

Aims. We propose a method for measuring the projected rotational velocity vsini with high precision even in spectra with blended lines. Though not automatic, our method is designed to be applied systematically to large numbers of objects without excessive computational requirement. Methods. We calcu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2011-07, Vol.531, p.A143
Hauptverfasser: Díaz, C. G., González, J. F., Levato, H., Grosso, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims. We propose a method for measuring the projected rotational velocity vsini with high precision even in spectra with blended lines. Though not automatic, our method is designed to be applied systematically to large numbers of objects without excessive computational requirement. Methods. We calculated the cross correlation function (CCF) of the object spectrum against a zero-rotation template and used the Fourier transform (FT) of the CCF central maximum to measure the parameter vsini taking the limb darkening effect and its wavelength dependence into account. The procedure also improves the definition of the CCF base line, resulting in errors related to the continuum position under 1% even for vsini = 280 km s-1. Tests with high-resolution spectra of F-type stars indicate that an accuracy well below 1% can be attained even for spectra where most lines are blended. Results. We have applied the method to measuring vsini in 251 A-type stars. For stars with vsini over 30 km s-1 (2–3 times our spectra resolution), our measurement errors are below 2.5% with a typical value of 1%. We compare our results with Royer et al. (2002a) using 155 stars in common, finding systematic differences of about 5% for rapidly rotating stars.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/201016386