Novel explanation for the shape of the lenticular galaxy bulge and its implication for red spiral galaxy evolution
Aims. According to Hubble's classification scheme, lenticular galaxies represent an intermediate evolutionary step between elliptical and spiral galaxies. This evolutionary path predicts that the aspect ratios of both lenticular and spiral galaxies should be smaller than the aspect ratios of th...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2009-10, Vol.505 (2), p.613-623 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims. According to Hubble's classification scheme, lenticular galaxies represent an intermediate evolutionary step between elliptical and spiral galaxies. This evolutionary path predicts that the aspect ratios of both lenticular and spiral galaxies should be smaller than the aspect ratios of their E6 or E7 elliptical predecessors. In contradiction to this prediction, observation has demonstrated that the aspect ratio of lenticular galaxies is larger than its immediate elliptical predecessor. In this paper, we suggest a novel explanation for this inconsistency. Methods. The approach described in this paper is primarily based on analytical methods; however, some numerical methods are also used. Results. Our idea comes from theoretical and experimental results, which show that a small increase in the equatorial diameter of an oblate spheroid with an aspect ratio ≤0.6 surprisingly causes its minor axis to also increase. We demonstrate that the same phenomenon occurs in the isodensity contours of elliptical galaxies given by Miyamoto & Nagai (Miyamoto M., & Nagai R., 1975, PASJ, 27, 533) and in a Maclaurin spheroidal mass in response to the gravitational force generated by a circumferential equatorial disk. Conclusions. The result of this paper is our explanation for the transformation of a disky elliptical galaxy into a lenticular galaxy which in response to rotation and equatorial diameter expansion evolves into a red spiral galaxy. This evolutionary path is consistent with the common environmental location of disky ellipticals, lenticular and red spiral galaxies and explains why elliptical galaxies are generally ≤E4. The proposed evolutionary path is opposite to the generally accepted formation of lenticular galaxies from the merger of spiral galaxies. |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/200912220 |