The X17.2 flare occurred in NOAA 10486: an example of filament destabilization caused by a domino effect

Context. It is now possible to distinguish between two main models describing the mechanisms responsible for eruptive flares : the standard model, which assumes that most of the energy is released, by magnetic reconnection, in the region hosting the core of a sheared magnetic field, and the breakout...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2009-01, Vol.493 (2), p.629-637
Hauptverfasser: Zuccarello, F., Romano, P., Farnik, F., Karlicky, M., Contarino, L., Battiato, V., Guglielmino, S. L., Comparato, M., Ugarte-Urra, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. It is now possible to distinguish between two main models describing the mechanisms responsible for eruptive flares : the standard model, which assumes that most of the energy is released, by magnetic reconnection, in the region hosting the core of a sheared magnetic field, and the breakout model, which assumes reconnection occurs at first in a magnetic arcade overlaying the eruptive features. Aims. We analyze the phenomena observed in NOAA 10486 before and during an X17.2 flare that occurred on 2003 October 28, to study the relationship between the pre-flare and flare phases and determine which model is the most suitable for interpreting this event. Methods. We performed an analysis of multiwavelength data set available for the event using radio data (0.8–4.5 GHz), images in the visible range (WL and Hα), EUV images (1600 and 195 Å), and X-ray data, as well as MDI longitudinal magnetograms. We determined the temporal sequence of events occurring before and during the X17.2 flare and the magnetic field configuration in the linear force-free field approximation. Results. The active region was characterized by a multiple arcade configuration and the X17.2 flare was preceded, by ~2 h, by the partial eruption of one filament. This eruption caused reconnection at null points located in the low atmosphere and a decrease in magnetic tension in the coronal field lines overlaying other filaments present in the active region. As a consequence, these filaments were destabilized and the X17.2 flare occurred. Conclusions. The phenomena observed in NOAA 10486 before and during the X17.2 flare cannot be explained by a simple scenario such as the standard or breakout model, but instead in terms of a so-called domino effect, involving a sequence of destabilizing processes that triggered the flare.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361:200809887