Self-consistent modeling of the outflow from the O-rich Mira IRC –20197

We present a self–consistent time–dependent model for the oxygen–rich Mira variable IRC –20197. This model includes a consistent treatment of the interactions among hydrodynamics, thermodynamics, radiative transfer, equilibrium chemistry, and heterogeneous dust formation with TiO2 nuclei. The model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2003-08, Vol.407 (1), p.191-206
Hauptverfasser: Jeong, K. S., Winters, J. M., Le Bertre, T., Sedlmayr, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a self–consistent time–dependent model for the oxygen–rich Mira variable IRC –20197. This model includes a consistent treatment of the interactions among hydrodynamics, thermodynamics, radiative transfer, equilibrium chemistry, and heterogeneous dust formation with TiO2 nuclei. The model is determined by the stellar parameters, stellar mass ${M_{\star} = 1.3\, M_{\odot}}$, stellar luminosity ${L_{\star} = 1.4\times 10^{4}\, L_{\odot}}$, stellar temperature ${T_{\star} = 2400\, {\rm K}}$, and solar abundances of the elements. The pulsation of the star is simulated by a piston at the inner boundary where the velocity varies sinusoidally with a period of ${P = 636\, {\rm d}}$ and an amplitude of $\Delta v_{\rm p} = 8\, {\rm km\,s^{-1}}$. Based on the atmospheric structure resulting from this hydrodynamic calculation at different phases, we have performed angle– and frequency–dependent continuum radiation transfer calculations, which result in the spectral energy distributions at different phases of the pulsation cycle and in synthetic light curves at different wavelengths. These are in good agreement with the infrared observations of IRC –20197. The model yields a time averaged outflow velocity of ${\rm 11.9\, km\,s^{-1}}$ and an average mass loss rate of $7.3\times 10^{-6}\, M_{\odot}~{\rm yr}^{-1}$ which are in good agreement with the values derived from radio observations. Furthermore, the chemical composition of the resulting grains is discussed.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361:20030693