HRIPCB: a challenging dataset for PCB defects detection and classification

To cope with the difficulties in inspection and classification of defects in printed circuit board (PCB), many methods have been proposed in previous work. However, few of them publish their datasets before, which hinders the introduction and comparison of new methods. In this study, HRIPCB, a synth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering (Stevenage, England) England), 2020-07, Vol.2020 (13), p.303-309
Hauptverfasser: Huang, Weibo, Wei, Peng, Zhang, Manhua, Liu, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To cope with the difficulties in inspection and classification of defects in printed circuit board (PCB), many methods have been proposed in previous work. However, few of them publish their datasets before, which hinders the introduction and comparison of new methods. In this study, HRIPCB, a synthesised PCB dataset that contains 1386 images with 6 kinds of defects is proposed for the use of detection, classification and registration tasks. Besides, a reference-based method is adopted to inspect and an end-to-end convolutional neural network is trained to classify the defects, which are collectively referred to as the RBCNN approach. Unlike conventional approaches that require pixel-by-pixel processing, the RBCNN method proposed in this study firstly locates the defects and then classifies them by deep neural networks, which shows superior performance on the dataset.
ISSN:2051-3305
2051-3305
DOI:10.1049/joe.2019.1183