Nature-inspired waveform optimisation for range spread target detection in cognitive radar

The waveform optimisation problem in cognitive radar is non-convex and will have sub-optimal solutions when solved by the semi-definite relaxation (SDR) technique. Here, a novel nature-inspired waveform optimisation framework is proposed for range-spread target detection in cognitive radar. First, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering (Stevenage, England) England), 2019-10, Vol.2019 (20), p.6767-6771
Hauptverfasser: Wang, Qing, Li, Meng, Gao, Lirong, Li, Kaiming, Chen, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6771
container_issue 20
container_start_page 6767
container_title Journal of engineering (Stevenage, England)
container_volume 2019
creator Wang, Qing
Li, Meng
Gao, Lirong
Li, Kaiming
Chen, Hua
description The waveform optimisation problem in cognitive radar is non-convex and will have sub-optimal solutions when solved by the semi-definite relaxation (SDR) technique. Here, a novel nature-inspired waveform optimisation framework is proposed for range-spread target detection in cognitive radar. First, the waveform optimisation problem is formulated using maximum a posteriori probability and Kalman filtering to estimate the target scattering coefficients. To solve this problem more accurately and efficiently, three nature-inspired algorithms (modified particle swarm optimisation algorithm, Bat Algorithm, and Beetle Antennae Search algorithm), as a nature-inspired waveform optimisation (NIWO) approach is proposed. It is demonstrated through computer simulations that the proposed NIWO approach significantly outperforms the SDR approach, showing a promising tool for waveform optimisation in cognitive radar.
doi_str_mv 10.1049/joe.2019.0527
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_joe_2019_0527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_080ead0b1a4346a48efdbf585265ae79</doaj_id><sourcerecordid>TJE2BF02443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-cc468e02eb8b630e7a33b0e23608a19b3a35d12a8c2720c4d8f03974ad774d2f3</originalsourceid><addsrcrecordid>eNp9kD1PAkEQhi9GE4lS2l9rcTj7cV-lElCM0QYbm83c7hxZArdkb8Hw713AGButZjJ55p3JkyQ3DEYMZH23dDTiwOoR5Lw8SwYccpYJAfn5r_4yGfb9EgCYkBwkGyQfrxi2njLb9RvryaSfuKPW-XXqNsGubY_Bui6Nk9Rjt6C033hCkwb0CwqpoUD6SNgu1W7R2WB3FFGD_jq5aHHV0_C7XiXv08l8_JS9vD3OxvcvmRa5EJnWsqgIODVVUwigEoVogLgooEJWNwJFbhjHSvOSg5amakHUpURTltLwVlwls1OucbhUG2_X6PfKoVXHgfMLhT5YvSIFFcTnoWEohSxQVtSaps2rnBc5UlnHrOyUpb3re0_tTx4DdfCsomd18KwOniNfnPhPu6L9_7CaP0_4wxS4lCIu3p4WLYWIbX0XFf1x5AvySY7O</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nature-inspired waveform optimisation for range spread target detection in cognitive radar</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Qing ; Li, Meng ; Gao, Lirong ; Li, Kaiming ; Chen, Hua</creator><creatorcontrib>Wang, Qing ; Li, Meng ; Gao, Lirong ; Li, Kaiming ; Chen, Hua</creatorcontrib><description>The waveform optimisation problem in cognitive radar is non-convex and will have sub-optimal solutions when solved by the semi-definite relaxation (SDR) technique. Here, a novel nature-inspired waveform optimisation framework is proposed for range-spread target detection in cognitive radar. First, the waveform optimisation problem is formulated using maximum a posteriori probability and Kalman filtering to estimate the target scattering coefficients. To solve this problem more accurately and efficiently, three nature-inspired algorithms (modified particle swarm optimisation algorithm, Bat Algorithm, and Beetle Antennae Search algorithm), as a nature-inspired waveform optimisation (NIWO) approach is proposed. It is demonstrated through computer simulations that the proposed NIWO approach significantly outperforms the SDR approach, showing a promising tool for waveform optimisation in cognitive radar.</description><identifier>ISSN: 2051-3305</identifier><identifier>EISSN: 2051-3305</identifier><identifier>DOI: 10.1049/joe.2019.0527</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>antenna arrays ; Beetle Antennae Search algorithm ; cognitive radar ; IET International Radar Conference (IRC 2018) ; Kalman filters ; modified particle swarm optimisation algorithm ; nature-inspired algorithms ; nature-inspired waveform optimisation approach ; novel nature-inspired waveform optimisation framework ; object detection ; optimisation ; particle swarm optimisation ; probability ; radar detection ; range spread target detection ; search problems ; semidefinite relaxation technique ; target scattering coefficients ; waveform optimisation problem</subject><ispartof>Journal of engineering (Stevenage, England), 2019-10, Vol.2019 (20), p.6767-6771</ispartof><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-cc468e02eb8b630e7a33b0e23608a19b3a35d12a8c2720c4d8f03974ad774d2f3</citedby><cites>FETCH-LOGICAL-c3533-cc468e02eb8b630e7a33b0e23608a19b3a35d12a8c2720c4d8f03974ad774d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fjoe.2019.0527$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fjoe.2019.0527$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,2096,11541,27901,27902,45550,45551,46027,46451</link.rule.ids></links><search><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Gao, Lirong</creatorcontrib><creatorcontrib>Li, Kaiming</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><title>Nature-inspired waveform optimisation for range spread target detection in cognitive radar</title><title>Journal of engineering (Stevenage, England)</title><description>The waveform optimisation problem in cognitive radar is non-convex and will have sub-optimal solutions when solved by the semi-definite relaxation (SDR) technique. Here, a novel nature-inspired waveform optimisation framework is proposed for range-spread target detection in cognitive radar. First, the waveform optimisation problem is formulated using maximum a posteriori probability and Kalman filtering to estimate the target scattering coefficients. To solve this problem more accurately and efficiently, three nature-inspired algorithms (modified particle swarm optimisation algorithm, Bat Algorithm, and Beetle Antennae Search algorithm), as a nature-inspired waveform optimisation (NIWO) approach is proposed. It is demonstrated through computer simulations that the proposed NIWO approach significantly outperforms the SDR approach, showing a promising tool for waveform optimisation in cognitive radar.</description><subject>antenna arrays</subject><subject>Beetle Antennae Search algorithm</subject><subject>cognitive radar</subject><subject>IET International Radar Conference (IRC 2018)</subject><subject>Kalman filters</subject><subject>modified particle swarm optimisation algorithm</subject><subject>nature-inspired algorithms</subject><subject>nature-inspired waveform optimisation approach</subject><subject>novel nature-inspired waveform optimisation framework</subject><subject>object detection</subject><subject>optimisation</subject><subject>particle swarm optimisation</subject><subject>probability</subject><subject>radar detection</subject><subject>range spread target detection</subject><subject>search problems</subject><subject>semidefinite relaxation technique</subject><subject>target scattering coefficients</subject><subject>waveform optimisation problem</subject><issn>2051-3305</issn><issn>2051-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kD1PAkEQhi9GE4lS2l9rcTj7cV-lElCM0QYbm83c7hxZArdkb8Hw713AGButZjJ55p3JkyQ3DEYMZH23dDTiwOoR5Lw8SwYccpYJAfn5r_4yGfb9EgCYkBwkGyQfrxi2njLb9RvryaSfuKPW-XXqNsGubY_Bui6Nk9Rjt6C033hCkwb0CwqpoUD6SNgu1W7R2WB3FFGD_jq5aHHV0_C7XiXv08l8_JS9vD3OxvcvmRa5EJnWsqgIODVVUwigEoVogLgooEJWNwJFbhjHSvOSg5amakHUpURTltLwVlwls1OucbhUG2_X6PfKoVXHgfMLhT5YvSIFFcTnoWEohSxQVtSaps2rnBc5UlnHrOyUpb3re0_tTx4DdfCsomd18KwOniNfnPhPu6L9_7CaP0_4wxS4lCIu3p4WLYWIbX0XFf1x5AvySY7O</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Wang, Qing</creator><creator>Li, Meng</creator><creator>Gao, Lirong</creator><creator>Li, Kaiming</creator><creator>Chen, Hua</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>IDLOA</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201910</creationdate><title>Nature-inspired waveform optimisation for range spread target detection in cognitive radar</title><author>Wang, Qing ; Li, Meng ; Gao, Lirong ; Li, Kaiming ; Chen, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-cc468e02eb8b630e7a33b0e23608a19b3a35d12a8c2720c4d8f03974ad774d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>antenna arrays</topic><topic>Beetle Antennae Search algorithm</topic><topic>cognitive radar</topic><topic>IET International Radar Conference (IRC 2018)</topic><topic>Kalman filters</topic><topic>modified particle swarm optimisation algorithm</topic><topic>nature-inspired algorithms</topic><topic>nature-inspired waveform optimisation approach</topic><topic>novel nature-inspired waveform optimisation framework</topic><topic>object detection</topic><topic>optimisation</topic><topic>particle swarm optimisation</topic><topic>probability</topic><topic>radar detection</topic><topic>range spread target detection</topic><topic>search problems</topic><topic>semidefinite relaxation technique</topic><topic>target scattering coefficients</topic><topic>waveform optimisation problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Gao, Lirong</creatorcontrib><creatorcontrib>Li, Kaiming</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of engineering (Stevenage, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qing</au><au>Li, Meng</au><au>Gao, Lirong</au><au>Li, Kaiming</au><au>Chen, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nature-inspired waveform optimisation for range spread target detection in cognitive radar</atitle><jtitle>Journal of engineering (Stevenage, England)</jtitle><date>2019-10</date><risdate>2019</risdate><volume>2019</volume><issue>20</issue><spage>6767</spage><epage>6771</epage><pages>6767-6771</pages><issn>2051-3305</issn><eissn>2051-3305</eissn><abstract>The waveform optimisation problem in cognitive radar is non-convex and will have sub-optimal solutions when solved by the semi-definite relaxation (SDR) technique. Here, a novel nature-inspired waveform optimisation framework is proposed for range-spread target detection in cognitive radar. First, the waveform optimisation problem is formulated using maximum a posteriori probability and Kalman filtering to estimate the target scattering coefficients. To solve this problem more accurately and efficiently, three nature-inspired algorithms (modified particle swarm optimisation algorithm, Bat Algorithm, and Beetle Antennae Search algorithm), as a nature-inspired waveform optimisation (NIWO) approach is proposed. It is demonstrated through computer simulations that the proposed NIWO approach significantly outperforms the SDR approach, showing a promising tool for waveform optimisation in cognitive radar.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/joe.2019.0527</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-3305
ispartof Journal of engineering (Stevenage, England), 2019-10, Vol.2019 (20), p.6767-6771
issn 2051-3305
2051-3305
language eng
recordid cdi_crossref_primary_10_1049_joe_2019_0527
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects antenna arrays
Beetle Antennae Search algorithm
cognitive radar
IET International Radar Conference (IRC 2018)
Kalman filters
modified particle swarm optimisation algorithm
nature-inspired algorithms
nature-inspired waveform optimisation approach
novel nature-inspired waveform optimisation framework
object detection
optimisation
particle swarm optimisation
probability
radar detection
range spread target detection
search problems
semidefinite relaxation technique
target scattering coefficients
waveform optimisation problem
title Nature-inspired waveform optimisation for range spread target detection in cognitive radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nature-inspired%20waveform%20optimisation%20for%20range%20spread%20target%20detection%20in%20cognitive%20radar&rft.jtitle=Journal%20of%20engineering%20(Stevenage,%20England)&rft.au=Wang,%20Qing&rft.date=2019-10&rft.volume=2019&rft.issue=20&rft.spage=6767&rft.epage=6771&rft.pages=6767-6771&rft.issn=2051-3305&rft.eissn=2051-3305&rft_id=info:doi/10.1049/joe.2019.0527&rft_dat=%3Cwiley_cross%3ETJE2BF02443%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_080ead0b1a4346a48efdbf585265ae79&rfr_iscdi=true