Nature-inspired waveform optimisation for range spread target detection in cognitive radar

The waveform optimisation problem in cognitive radar is non-convex and will have sub-optimal solutions when solved by the semi-definite relaxation (SDR) technique. Here, a novel nature-inspired waveform optimisation framework is proposed for range-spread target detection in cognitive radar. First, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering (Stevenage, England) England), 2019-10, Vol.2019 (20), p.6767-6771
Hauptverfasser: Wang, Qing, Li, Meng, Gao, Lirong, Li, Kaiming, Chen, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The waveform optimisation problem in cognitive radar is non-convex and will have sub-optimal solutions when solved by the semi-definite relaxation (SDR) technique. Here, a novel nature-inspired waveform optimisation framework is proposed for range-spread target detection in cognitive radar. First, the waveform optimisation problem is formulated using maximum a posteriori probability and Kalman filtering to estimate the target scattering coefficients. To solve this problem more accurately and efficiently, three nature-inspired algorithms (modified particle swarm optimisation algorithm, Bat Algorithm, and Beetle Antennae Search algorithm), as a nature-inspired waveform optimisation (NIWO) approach is proposed. It is demonstrated through computer simulations that the proposed NIWO approach significantly outperforms the SDR approach, showing a promising tool for waveform optimisation in cognitive radar.
ISSN:2051-3305
2051-3305
DOI:10.1049/joe.2019.0527