Nature-inspired waveform optimisation for range spread target detection in cognitive radar
The waveform optimisation problem in cognitive radar is non-convex and will have sub-optimal solutions when solved by the semi-definite relaxation (SDR) technique. Here, a novel nature-inspired waveform optimisation framework is proposed for range-spread target detection in cognitive radar. First, t...
Gespeichert in:
Veröffentlicht in: | Journal of engineering (Stevenage, England) England), 2019-10, Vol.2019 (20), p.6767-6771 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The waveform optimisation problem in cognitive radar is non-convex and will have sub-optimal solutions when solved by the semi-definite relaxation (SDR) technique. Here, a novel nature-inspired waveform optimisation framework is proposed for range-spread target detection in cognitive radar. First, the waveform optimisation problem is formulated using maximum a posteriori probability and Kalman filtering to estimate the target scattering coefficients. To solve this problem more accurately and efficiently, three nature-inspired algorithms (modified particle swarm optimisation algorithm, Bat Algorithm, and Beetle Antennae Search algorithm), as a nature-inspired waveform optimisation (NIWO) approach is proposed. It is demonstrated through computer simulations that the proposed NIWO approach significantly outperforms the SDR approach, showing a promising tool for waveform optimisation in cognitive radar. |
---|---|
ISSN: | 2051-3305 2051-3305 |
DOI: | 10.1049/joe.2019.0527 |