Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images

Cloud detection is a fundamental yet challenging topic in remote-sensing image processing. The authors propose a method for multi-dimensional feature extraction and superpixel segmentation, and use a voting-based clustering ensemble to capture the whole target shape. In order to further identify clo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering (Stevenage, England) England), 2019-10, Vol.2019 (20), p.6675-6679
Hauptverfasser: Shi, Yueting, Wang, Weijiang, Gong, Qishu, Li, Dingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6679
container_issue 20
container_start_page 6675
container_title Journal of engineering (Stevenage, England)
container_volume 2019
creator Shi, Yueting
Wang, Weijiang
Gong, Qishu
Li, Dingyi
description Cloud detection is a fundamental yet challenging topic in remote-sensing image processing. The authors propose a method for multi-dimensional feature extraction and superpixel segmentation, and use a voting-based clustering ensemble to capture the whole target shape. In order to further identify clouds, snow-covered lands, and bright buildings on remote-sensing images, they first implement an Ostu threshold to get high grey-level sub-regions, and then extract the descriptors of these sub-regions and put them into the softmax regression classifier. Regarding these methods, the authors conduct experiments using GF-1 remote-sensing images. The results demonstrate the effectiveness and excellency of their proposed method.
doi_str_mv 10.1049/joe.2019.0240
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_joe_2019_0240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_995037bb534449d593661db5209aac5f</doaj_id><sourcerecordid>TJE2BF02422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-59bc30c9e860cfe4384c63f547f8d93dd616f9211b45f9bac73adb5c3c0dd4c73</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhSMEEggY2bMypFy_0noExFNIDMBsOfZ1cJXYlZ0K-Pe4FCEWmO7rO-dKp6pOCMwIcHm2jDijQOQMKIed6oCCIA1jIHZ_9fvVcc5LACCMU-DkoEpP6xWmlX_Hoc7YjxgmPfkYah1sPWrz6gPWA-oUfOhrM-icvfPmmxn6mPz0OtYupnKMa1tbnNB8XX2oE45xwiZjyBu5H3WP-ajac3rIePxdD6uX66vny9vm4fHm7vL8oTFMMNoI2RkGRuKiBeOQswU3LXOCz93CSmZtS1onKSEdF0522syZtp0wzIC1vEyH1d3W10a9VKtUvqcPFbVXX4uYeqXT5M2ASkoBbN51gnHOpRWStS0pZhSk1ka44tVsvUyKOSd0P34E1CZ_VfJXm_zVJv_Ct1v-zQ_48T-snu-v6MV1aSktwtOt0ONUsHUKJaI_nnwCGf6YMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><creator>Shi, Yueting ; Wang, Weijiang ; Gong, Qishu ; Li, Dingyi</creator><creatorcontrib>Shi, Yueting ; Wang, Weijiang ; Gong, Qishu ; Li, Dingyi</creatorcontrib><description>Cloud detection is a fundamental yet challenging topic in remote-sensing image processing. The authors propose a method for multi-dimensional feature extraction and superpixel segmentation, and use a voting-based clustering ensemble to capture the whole target shape. In order to further identify clouds, snow-covered lands, and bright buildings on remote-sensing images, they first implement an Ostu threshold to get high grey-level sub-regions, and then extract the descriptors of these sub-regions and put them into the softmax regression classifier. Regarding these methods, the authors conduct experiments using GF-1 remote-sensing images. The results demonstrate the effectiveness and excellency of their proposed method.</description><identifier>ISSN: 2051-3305</identifier><identifier>EISSN: 2051-3305</identifier><identifier>DOI: 10.1049/joe.2019.0240</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>bright buildings ; cloud detection ; clouds ; feature extraction ; geophysical image processing ; geophysical techniques ; gf-1 remote-sensing images ; GF‐1 remote‐sensing images ; grey-level sub-regions ; high grey-level sub-regions ; IET International Radar Conference (IRC 2018) ; image classification ; image segmentation ; learning (artificial intelligence) ; machine learning classification algorithm ; multidimensional feature extraction ; Ostu threshold ; remote sensing ; remote-sensing image processing ; snow-covered lands ; softmax regression classifier ; superpixel segmentation ; target shape ; voting-based clustering ensemble</subject><ispartof>Journal of engineering (Stevenage, England), 2019-10, Vol.2019 (20), p.6675-6679</ispartof><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-59bc30c9e860cfe4384c63f547f8d93dd616f9211b45f9bac73adb5c3c0dd4c73</citedby><cites>FETCH-LOGICAL-c3532-59bc30c9e860cfe4384c63f547f8d93dd616f9211b45f9bac73adb5c3c0dd4c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fjoe.2019.0240$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fjoe.2019.0240$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,2102,11562,27924,27925,45574,45575,46052,46476</link.rule.ids></links><search><creatorcontrib>Shi, Yueting</creatorcontrib><creatorcontrib>Wang, Weijiang</creatorcontrib><creatorcontrib>Gong, Qishu</creatorcontrib><creatorcontrib>Li, Dingyi</creatorcontrib><title>Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images</title><title>Journal of engineering (Stevenage, England)</title><description>Cloud detection is a fundamental yet challenging topic in remote-sensing image processing. The authors propose a method for multi-dimensional feature extraction and superpixel segmentation, and use a voting-based clustering ensemble to capture the whole target shape. In order to further identify clouds, snow-covered lands, and bright buildings on remote-sensing images, they first implement an Ostu threshold to get high grey-level sub-regions, and then extract the descriptors of these sub-regions and put them into the softmax regression classifier. Regarding these methods, the authors conduct experiments using GF-1 remote-sensing images. The results demonstrate the effectiveness and excellency of their proposed method.</description><subject>bright buildings</subject><subject>cloud detection</subject><subject>clouds</subject><subject>feature extraction</subject><subject>geophysical image processing</subject><subject>geophysical techniques</subject><subject>gf-1 remote-sensing images</subject><subject>GF‐1 remote‐sensing images</subject><subject>grey-level sub-regions</subject><subject>high grey-level sub-regions</subject><subject>IET International Radar Conference (IRC 2018)</subject><subject>image classification</subject><subject>image segmentation</subject><subject>learning (artificial intelligence)</subject><subject>machine learning classification algorithm</subject><subject>multidimensional feature extraction</subject><subject>Ostu threshold</subject><subject>remote sensing</subject><subject>remote-sensing image processing</subject><subject>snow-covered lands</subject><subject>softmax regression classifier</subject><subject>superpixel segmentation</subject><subject>target shape</subject><subject>voting-based clustering ensemble</subject><issn>2051-3305</issn><issn>2051-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>DOA</sourceid><recordid>eNp9kDtPwzAUhSMEEggY2bMypFy_0noExFNIDMBsOfZ1cJXYlZ0K-Pe4FCEWmO7rO-dKp6pOCMwIcHm2jDijQOQMKIed6oCCIA1jIHZ_9fvVcc5LACCMU-DkoEpP6xWmlX_Hoc7YjxgmPfkYah1sPWrz6gPWA-oUfOhrM-icvfPmmxn6mPz0OtYupnKMa1tbnNB8XX2oE45xwiZjyBu5H3WP-ajac3rIePxdD6uX66vny9vm4fHm7vL8oTFMMNoI2RkGRuKiBeOQswU3LXOCz93CSmZtS1onKSEdF0522syZtp0wzIC1vEyH1d3W10a9VKtUvqcPFbVXX4uYeqXT5M2ASkoBbN51gnHOpRWStS0pZhSk1ka44tVsvUyKOSd0P34E1CZ_VfJXm_zVJv_Ct1v-zQ_48T-snu-v6MV1aSktwtOt0ONUsHUKJaI_nnwCGf6YMA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Shi, Yueting</creator><creator>Wang, Weijiang</creator><creator>Gong, Qishu</creator><creator>Li, Dingyi</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>IDLOA</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201910</creationdate><title>Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images</title><author>Shi, Yueting ; Wang, Weijiang ; Gong, Qishu ; Li, Dingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-59bc30c9e860cfe4384c63f547f8d93dd616f9211b45f9bac73adb5c3c0dd4c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bright buildings</topic><topic>cloud detection</topic><topic>clouds</topic><topic>feature extraction</topic><topic>geophysical image processing</topic><topic>geophysical techniques</topic><topic>gf-1 remote-sensing images</topic><topic>GF‐1 remote‐sensing images</topic><topic>grey-level sub-regions</topic><topic>high grey-level sub-regions</topic><topic>IET International Radar Conference (IRC 2018)</topic><topic>image classification</topic><topic>image segmentation</topic><topic>learning (artificial intelligence)</topic><topic>machine learning classification algorithm</topic><topic>multidimensional feature extraction</topic><topic>Ostu threshold</topic><topic>remote sensing</topic><topic>remote-sensing image processing</topic><topic>snow-covered lands</topic><topic>softmax regression classifier</topic><topic>superpixel segmentation</topic><topic>target shape</topic><topic>voting-based clustering ensemble</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yueting</creatorcontrib><creatorcontrib>Wang, Weijiang</creatorcontrib><creatorcontrib>Gong, Qishu</creatorcontrib><creatorcontrib>Li, Dingyi</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of engineering (Stevenage, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yueting</au><au>Wang, Weijiang</au><au>Gong, Qishu</au><au>Li, Dingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images</atitle><jtitle>Journal of engineering (Stevenage, England)</jtitle><date>2019-10</date><risdate>2019</risdate><volume>2019</volume><issue>20</issue><spage>6675</spage><epage>6679</epage><pages>6675-6679</pages><issn>2051-3305</issn><eissn>2051-3305</eissn><abstract>Cloud detection is a fundamental yet challenging topic in remote-sensing image processing. The authors propose a method for multi-dimensional feature extraction and superpixel segmentation, and use a voting-based clustering ensemble to capture the whole target shape. In order to further identify clouds, snow-covered lands, and bright buildings on remote-sensing images, they first implement an Ostu threshold to get high grey-level sub-regions, and then extract the descriptors of these sub-regions and put them into the softmax regression classifier. Regarding these methods, the authors conduct experiments using GF-1 remote-sensing images. The results demonstrate the effectiveness and excellency of their proposed method.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/joe.2019.0240</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-3305
ispartof Journal of engineering (Stevenage, England), 2019-10, Vol.2019 (20), p.6675-6679
issn 2051-3305
2051-3305
language eng
recordid cdi_crossref_primary_10_1049_joe_2019_0240
source DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles
subjects bright buildings
cloud detection
clouds
feature extraction
geophysical image processing
geophysical techniques
gf-1 remote-sensing images
GF‐1 remote‐sensing images
grey-level sub-regions
high grey-level sub-regions
IET International Radar Conference (IRC 2018)
image classification
image segmentation
learning (artificial intelligence)
machine learning classification algorithm
multidimensional feature extraction
Ostu threshold
remote sensing
remote-sensing image processing
snow-covered lands
softmax regression classifier
superpixel segmentation
target shape
voting-based clustering ensemble
title Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superpixel%20segmentation%20and%20machine%20learning%20classification%20algorithm%20for%20cloud%20detection%20in%20remote-sensing%20images&rft.jtitle=Journal%20of%20engineering%20(Stevenage,%20England)&rft.au=Shi,%20Yueting&rft.date=2019-10&rft.volume=2019&rft.issue=20&rft.spage=6675&rft.epage=6679&rft.pages=6675-6679&rft.issn=2051-3305&rft.eissn=2051-3305&rft_id=info:doi/10.1049/joe.2019.0240&rft_dat=%3Cwiley_cross%3ETJE2BF02422%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_995037bb534449d593661db5209aac5f&rfr_iscdi=true