Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images
Cloud detection is a fundamental yet challenging topic in remote-sensing image processing. The authors propose a method for multi-dimensional feature extraction and superpixel segmentation, and use a voting-based clustering ensemble to capture the whole target shape. In order to further identify clo...
Gespeichert in:
Veröffentlicht in: | Journal of engineering (Stevenage, England) England), 2019-10, Vol.2019 (20), p.6675-6679 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cloud detection is a fundamental yet challenging topic in remote-sensing image processing. The authors propose a method for multi-dimensional feature extraction and superpixel segmentation, and use a voting-based clustering ensemble to capture the whole target shape. In order to further identify clouds, snow-covered lands, and bright buildings on remote-sensing images, they first implement an Ostu threshold to get high grey-level sub-regions, and then extract the descriptors of these sub-regions and put them into the softmax regression classifier. Regarding these methods, the authors conduct experiments using GF-1 remote-sensing images. The results demonstrate the effectiveness and excellency of their proposed method. |
---|---|
ISSN: | 2051-3305 2051-3305 |
DOI: | 10.1049/joe.2019.0240 |