Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images

Cloud detection is a fundamental yet challenging topic in remote-sensing image processing. The authors propose a method for multi-dimensional feature extraction and superpixel segmentation, and use a voting-based clustering ensemble to capture the whole target shape. In order to further identify clo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering (Stevenage, England) England), 2019-10, Vol.2019 (20), p.6675-6679
Hauptverfasser: Shi, Yueting, Wang, Weijiang, Gong, Qishu, Li, Dingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud detection is a fundamental yet challenging topic in remote-sensing image processing. The authors propose a method for multi-dimensional feature extraction and superpixel segmentation, and use a voting-based clustering ensemble to capture the whole target shape. In order to further identify clouds, snow-covered lands, and bright buildings on remote-sensing images, they first implement an Ostu threshold to get high grey-level sub-regions, and then extract the descriptors of these sub-regions and put them into the softmax regression classifier. Regarding these methods, the authors conduct experiments using GF-1 remote-sensing images. The results demonstrate the effectiveness and excellency of their proposed method.
ISSN:2051-3305
2051-3305
DOI:10.1049/joe.2019.0240