Deep neural network based approach for ECG classification using hybrid differential features and active learning

A novel active learning-based electrocardiogram (ECG) signal classification method using eigenvalues and deep learning is proposed. Six statistical features relating to ECG beat intervals are calculated separately for each heartbeat. Both statistical features and eigenvalues of ECG beats are combine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET signal processing 2019-04, Vol.13 (2), p.165-175
1. Verfasser: Hanbay, Kazım
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel active learning-based electrocardiogram (ECG) signal classification method using eigenvalues and deep learning is proposed. Six statistical features relating to ECG beat intervals are calculated separately for each heartbeat. Both statistical features and eigenvalues of ECG beats are combined into a single feature vector. The eigenvalues of ECG beats are used as an input to denoising autoencoder (DAE). Weighted ECG beat intervals are calculated by using ten-fold cross-validation approach. To learn an efficient feature representation from the hybrid feature vector, DAE is used in an unsupervised way. After completing the feature learning procedure, a softmax regression layer is added on the top of the resulting hidden layer of DAE, and thus a suitable deep neural network (DNN) architecture is built. The learned features obtained from the autoencoder layers are fed to the softmax regression layer for classification. To update weights of the proposed eigenvalues-based DNN model, ECG beats are labelled by the medical expert are used. In order to determine the most informative beats, entropy and Breaking-Ties are also used as selection criteria. The proposed method is evaluated in terms of ECG beats classes. The classification performance of the authors’ proposed model is also compared with the several conventional machine learning classifiers.
ISSN:1751-9675
1751-9683
1751-9683
DOI:10.1049/iet-spr.2018.5103