Review of the application of machine learning to the automatic semantic annotation of images

The massive amount of digital content generated daily in the modern world has created the need for an image retrieval system built on image analysis via image processing and machine learning, therefore this study explains the role of machine learning in bridging the semantic gap in content-based ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing 2019-06, Vol.13 (8), p.1232-1245
Hauptverfasser: Olaode, Abass, Naghdy, Golshah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The massive amount of digital content generated daily in the modern world has created the need for an image retrieval system built on image analysis via image processing and machine learning, therefore this study explains the role of machine learning in bridging the semantic gap in content-based image retrieval, proposes an automatic image annotation framework, in which training images are obtained from social media, and semantic indexing is achieved using a combination of supervised and unsupervised machine learning. Furthermore, the study also highlights the need for continuous vocabulary improvement for optimum system performance and recommends hardware implementation of machine learning algorithms to ensure high overall speed of image retrieval systems.
ISSN:1751-9659
1751-9667
1751-9667
DOI:10.1049/iet-ipr.2018.6153