Tuning a model predictive controller for doubly fed induction generator employing a constrained genetic algorithm

This study presents a model predictive control (MPC) for a doubly fed induction generator (DFIG) power control using a state-space prediction model. Genetic algorithms (GAs) have demonstrated their potential in finding good solutions for complex problems. However, GA in its original form lacks a mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET electric power applications 2019-06, Vol.13 (6), p.819-826
Hauptverfasser: Rodrigues, Lucas L, Potts, Alain S, Vilcanqui, Omar A. C, Sguarezi Filho, Alfeu J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a model predictive control (MPC) for a doubly fed induction generator (DFIG) power control using a state-space prediction model. Genetic algorithms (GAs) have demonstrated their potential in finding good solutions for complex problems. However, GA in its original form lacks a mechanism for handling constraints. In this way, a method for tuning the MPC based on a novel constrained GA is proposed. In this way, the method permits a good solution for the weighing matrices with predetermined maximum requirements, such as maximum overshoot, just using the DFIG control simulation. Finally, experimental results are presented to endorse the proposed theory.
ISSN:1751-8660
1751-8679
1751-8679
DOI:10.1049/iet-epa.2018.5922