Multiple human tracking in RGB-depth data: a survey
Multiple human tracking (MHT) is a fundamental task in many computer vision applications. Appearance-based approaches, primarily formulated on RGB data, are constrained and affected by problems arising from occlusions and/or illumination variations. In recent years, the arrival of cheap RGB-depth de...
Gespeichert in:
Veröffentlicht in: | IET computer vision 2017-06, Vol.11 (4), p.265-285 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiple human tracking (MHT) is a fundamental task in many computer vision applications. Appearance-based approaches, primarily formulated on RGB data, are constrained and affected by problems arising from occlusions and/or illumination variations. In recent years, the arrival of cheap RGB-depth devices has led to many new approaches to MHT, and many of these integrate colour and depth cues to improve each and every stage of the process. In this survey, the authors present the common processing pipeline of these methods and review their methodology based (a) on how they implement this pipeline and (b) on what role depth plays within each stage of it. They identify and introduce existing, publicly available, benchmark datasets and software resources that fuse colour and depth data for MHT. Finally, they present a brief comparative evaluation of the performance of those works that have applied their methods to these datasets. |
---|---|
ISSN: | 1751-9632 1751-9640 1751-9640 |
DOI: | 10.1049/iet-cvi.2016.0178 |