Ensemble systems and cancellable transformations for multibiometric-based identification

The concept of cancellable biometrics has been introduced as a way to overcome privacy concerns surrounding the management of biometric data. The goal is to transform a biometric trait into a new but revocable representation for enrolment and identification/verification. Thus, if compromised, a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET biometrics 2014-03, Vol.3 (1), p.29-40
Hauptverfasser: Canuto, Anne Magaly de Paula, Fairhurst, Michael C, Pintro, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of cancellable biometrics has been introduced as a way to overcome privacy concerns surrounding the management of biometric data. The goal is to transform a biometric trait into a new but revocable representation for enrolment and identification/verification. Thus, if compromised, a new representation of original biometric data can be generated. In addition, multi-biometric systems are increasingly being deployed in various biometric-based applications because of their advantages over uni-biometric systems. In this study, the authors specifically investigate the use of ensemble systems and cancellable transformations for the multi-biometric context, and the authors use as examples two different biometric modalities (fingerprint and handwritten signature) separately and in the multi-modal context (multi-biometric). The datasets to be used in this analysis were FVC2004 (fingerprint verification competition) for fingerprint and an in-house database for signature. To increase the effectiveness of the proposed ensemble systems, two feature selection (FS) methods will be used to distribute the attributes among the individual classifiers of an ensemble, increasing diversity and performance of such systems. As a result of this analysis, they will observe that the use of a cancellable transformation in the multi-biometric dataset increased accuracy level for the ensemble systems, mainly when using FS methods.
ISSN:2047-4938
2047-4946
2047-4946
DOI:10.1049/iet-bmt.2012.0032