Greedy Matrix Completion with Fitting Error and Rank Iterative Minimization

A novel matrix completion algorithm which iteratively minimizes the fitting error and the matrix rank is presented. Unlike conventional matrix completion algorithms, which usually require some relaxation technique to cope with the low rank constraints, the proposed algorithm does not require any suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Journal of Electronics 2017-07, Vol.26 (4), p.814-819
Hauptverfasser: Wang, Youhua, Zhang, Yiming, Zhang, Jianqiu, Hu, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel matrix completion algorithm which iteratively minimizes the fitting error and the matrix rank is presented. Unlike conventional matrix completion algorithms, which usually require some relaxation technique to cope with the low rank constraints, the proposed algorithm does not require any such techniques, thus making the selection of the parameter q of the matrix qnorm(0 〈 q ≤ 1) or the regularization parameter unnecessary. Simulation results of the random generated data and Jester joke data set verify our algorithm's effectiveness and superiority over the reported algorithms in literature.
ISSN:1022-4653
2075-5597
DOI:10.1049/cje.2017.06.013