DOA Estimation Using Block Variational Sparse Bayesian Learning

In Direction-of-arrival(DOA) estimation,the real-valued sparse Bayesian algorithm degrades the estimation performance by decomposing the complex value into real and imaginary components and combining them independently. We directly use complex probability density functions to model the noise and com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Journal of Electronics 2017-07, Vol.26 (4), p.768-772
Hauptverfasser: Huang, Qinghua, Zhang, Guangfei, Fang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Direction-of-arrival(DOA) estimation,the real-valued sparse Bayesian algorithm degrades the estimation performance by decomposing the complex value into real and imaginary components and combining them independently. We directly use complex probability density functions to model the noise and complex-valued sparse direction weights. Based on the Multiple measurement vectors(MMV), block sparse structure for the direction weights is integrated into the variational Bayesian learning to provide accurate source direction estimates. The proposed algorithm can be used for arbitrary array geometries and does not need the prior information of the incident signal number. Simulation results demonstrate the better performance of the proposed method compared with the real-valued sparse Bayesian algorithm, the Orthogonal matching pursuit(OMP) and l1 norm based complexvalued methods.
ISSN:1022-4653
2075-5597
DOI:10.1049/cje.2017.04.004