Deep Boltzmann machine algorithm for accurate medical image analysis for classification of cancerous region

In this research work, a deep learning algorithm is applied to the medical domain to deliver a better healthcare system. For this, a deep learning framework for classification the region of interest pattern of complex hyperspectral medical images is proposed. The performance of computer-aided diagno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive computation and systems 2019-09, Vol.1 (3), p.85-90
Hauptverfasser: Jeyaraj, Pandia Rajan, Nadar, Edward Rajan Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research work, a deep learning algorithm is applied to the medical domain to deliver a better healthcare system. For this, a deep learning framework for classification the region of interest pattern of complex hyperspectral medical images is proposed. The performance of computer-aided diagnosis by verifying the region in hyperspectral image by pre and post-cancerous region classification is enhanced. For this a deep Boltzmann machine (DBM) architecture of the bipartite structure as an unsupervised generative model was developed. The performance of DBM is compared with deep convolutional neural network architecture. For implementation, a three-layer unsupervised network with a backpropagation structure is used. From the presented dataset, image patches are collected and classified into two classes, namely non-informative and discriminative classes as labelled classes. The spatial information is used for classification and spectral-spatial representation of class labels is formed. In the labelled classes, the accuracy, false-positive predictions, sensitivity are obtained for the proposed fully-connected network. By the proposed cognitive computation technique an accuracy of 95.5% with 93.5% sensitivity was obtained. From the obtained classification, accuracy and success rate DBM provide a better classification of complex images compared to traditional convolution network.
ISSN:2517-7567
1873-9601
2517-7567
1873-961X
DOI:10.1049/ccs.2019.0004