Nanoscale engineering of radiation tolerant silicon carbide

Radiation tolerance is determined by how effectively the microstructure can remove point defects produced by irradiation. Engineered nanocrystalline SiC with a high-density of stacking faults (SFs) has significantly enhanced recombination of interstitials and vacancies, leading to self-healing of ir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2012-10, Vol.14 (38), p.13429-13436
Hauptverfasser: Zhang, Yanwen, Ishimaru, Manabu, Varga, Tamas, Oda, Takuji, Hardiman, Chris, Xue, Haizhou, Katoh, Yutai, Shannon, Steven, Weber, William J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiation tolerance is determined by how effectively the microstructure can remove point defects produced by irradiation. Engineered nanocrystalline SiC with a high-density of stacking faults (SFs) has significantly enhanced recombination of interstitials and vacancies, leading to self-healing of irradiation-induced defects. While single crystal SiC readily undergoes an irradiation-induced crystalline to amorphous transformation at room temperature, the nano-engineered SiC with a high-density of SFs exhibits more than an order of magnitude increase in radiation resistance. Molecular dynamics simulations of collision cascades show that the nano-layered SFs lead to enhanced mobility of interstitial Si atoms. The remarkable radiation resistance in the nano-engineered SiC is attributed to the high-density of SFs within nano-sized grain structures that significantly enhance point defect annihilation. Radiation tolerance is determined by how well the microstructure, containing stacking faults and interfaces, can effectively remove irradiation-induced point defects.
ISSN:1463-9076
1463-9084
DOI:10.1039/c2cp42342a