Ultrafast photoinduced intramolecular charge transfer in push-pull distyryl furan and benzofuran: solvent and molecular structure effect

The excited state deactivation pathways of push-pull distyryl furan and benzofuran derivatives in several organic solvents were investigated in detail by using time-resolved transient absorption and fluorescence spectroscopies, with nano- and femto-second time resolution. Solvent polarity was found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2011-01, Vol.13 (1), p.4519-4528
Hauptverfasser: Carlotti, Benedetta, Spalletti, Anna, Šindler-Kulyk, Marija, Elisei, Fausto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The excited state deactivation pathways of push-pull distyryl furan and benzofuran derivatives in several organic solvents were investigated in detail by using time-resolved transient absorption and fluorescence spectroscopies, with nano- and femto-second time resolution. Solvent polarity was found to play a key role in determining the efficiencies of fluorescence, intersystem crossing and internal conversion. The triplet yield gradually decreased, while the internal conversion increased upon increasing the solvent dielectric constant. However the fluorescence showed a different solvent polarity effect in the low and high solvent polarity region, with a reversal of the trend of fluorescence properties (quantum yield and lifetime). This fact points to an emitting state of a different nature (smaller and larger dipole moments) in the two cases, as also suggested by the huge fluorosolvatochromism. In fact the ultrafast spectroscopic investigation evidenced the presence of two transients characterized by peculiar spectral shapes assigned to a locally excited (LE) and a charge transfer (CT) state. In the more polar solvents the CT state was the longer lived, fluorescent one and an intramolecular charge transfer process was found to be operative and to become faster (up to ∼200-250 fs) in the higher polarity media. On the contrary, distyrylfuran, which exhibits the same molecular skeleton without the push-pull character showed a similar excited state dynamics in solvents of different polarities. The dynamics of the lowest excited singlet state of nitro-substituted aromatic compounds is tuned by the solvent properties.
ISSN:1463-9076
1463-9084
DOI:10.1039/c0cp02337j