Development of a micro dual beam fluorometric detector specific for microchip analysis of benzo[a]pyrene and benzo[k]fluoranthene in diesel exhaust particulate samples
We developed a device and some systems for detecting benzo[a]pyrene (B[a]P) and benzo[k]fluoranthene (B[k]F). The device uses a UV light-emitting diode that emits light with a wavelength of 370 nm and a violet laser diode that emits light with a wavelength of 395 nm as excitation light sources. The...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2005-01, Vol.130 (9), p.1253-1257 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We developed a device and some systems for detecting benzo[a]pyrene (B[a]P) and benzo[k]fluoranthene (B[k]F). The device uses a UV light-emitting diode that emits light with a wavelength of 370 nm and a violet laser diode that emits light with a wavelength of 395 nm as excitation light sources. The detection method is based on the following observation: characteristic fluorescence is emitted from both B[a]P and B[k]F, with intensities up to 10 times greater than those from 22 other polycyclic aromatic hydrocarbons (PAHs). The excitation and emission wavelengths for fluorescence from B[a]P and B[k]F are 370 and 429 nm, and 395 and 429 nm, respectively. Further, we calculated their concentrations in diesel exhaust particles by means of two calibration curves determined using a mixture of 24 PAHs. The detection limits of the proposed device with a microchip are 5.58 microg L(-1) for B[a]P and 6.03 microg L(-1) for B[k]F. We applied this method to analyze B[a]P or B[k]F contained in three types of diesel exhaust particles, and the results agreed well with those obtained by liquid chromatography. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/b504440e |