"Clicking" trimeric peptides onto hybrid T 8 POSS nanocages and identifying synthesis limitations

Macromolecule branching upon polyhedral oligomeric silsesquioxanes (POSS) "click" chemistry has previously been reported for promoting natural biological responses , particularly when regarding their demonstrated biocompatibility and structural robustness as potential macromolecule anchori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-08, Vol.16 (31), p.14802-14812
Hauptverfasser: Anderson, Lewis R, Hunter, Ann P, Kershaw, Matthew J, Bylikin, Sergey Y, Bowen, James, Taylor, Peter G, Birchall, Martin A, Mehrban, Nazia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macromolecule branching upon polyhedral oligomeric silsesquioxanes (POSS) "click" chemistry has previously been reported for promoting natural biological responses , particularly when regarding their demonstrated biocompatibility and structural robustness as potential macromolecule anchoring points. However, "clicking" of large molecules around POSS structures uncovers two main challenges: (1) a synthetic challenge encompassing multi-covalent attachment of macromolecules to a single nanoscale-central position, and (2) purification and separation of fully adorned nanocages from those that are incomplete due to their similar physical characteristics. Here we present peptide decoration to a T POSS nanocage through the attachment of azido-modified trimers. Triglycine- and trialanine-methyl esters "clicked" to 97% and 92% completion, respectively, resulting in 84% and 68% yields of the fully-adorned octamers. The "clicks" halt within 27-h of the reaction time, and efforts to further increase the octamer yield were of negligible benefit. Exploration of reaction conditions reveals multiple factors preventing full octa-arm modification to all available POSS nanocages, and offers insights into macromolecule attachment between both peptides and small inorganic-organic structures, all of which require consideration for future work of this nature.
ISSN:2040-3364
2040-3372
DOI:10.1039/D4NR01685H