Rapid synthesis of high-purity molybdenum carbide with controlled crystal phases
The synthesis of phase-pure carbide nanomaterials is crucial for understanding their structure-performance relationships, and for advancing their application in catalysis. Molybdenum carbides, in particular, have garnered increasing interest due to their Pt-like surface electronic properties and hig...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2024-07, Vol.11 (15), p.3595-363 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The synthesis of phase-pure carbide nanomaterials is crucial for understanding their structure-performance relationships, and for advancing their application in catalysis. Molybdenum carbides, in particular, have garnered increasing interest due to their Pt-like surface electronic properties and high catalytic activity. Traditional methods for synthesizing molybdenum carbide are often lengthy and energy-intensive, leading to an uncontrolled phase, low purity, and excessive carbon coverage, which hinder their catalytic performance improvement. This work introduces a novel pulsed Joule heating (PJH) technique that overcomes these limitations, enabling the controlled synthesis of high-purity molybdenum carbides (β-Mo
2
C, η-MoC
1−
x
, and α-MoC
1−
x
) within seconds by using MoO
x
/4-Cl-
o
-phenylenediamine as the hybrid precursor. The PJH method allows precise control over the diffusion of carbon species in the Mo-C system, resulting in a significantly improved phase purity of up to 96.89 wt%. Moreover, the electronic structure of platinum catalysts on molybdenum carbide was modulated through electron metal-support interaction (EMSI) between Pt and Mo
x
C, and contributed to enhanced catalytic performance compared to carbon-supported Pt catalysts during the hydrogen evolution reaction. Overall, this work paves the way for efficient production of high-quality molybdenum carbide nanomaterials, and thus is expected to accelerate their industrial deployments in practical catalytic reactions.
A kinetic controllable method for the preparation of phase-pure molybdenum carbide phase, α-MoC
1−
x
, η-MoC
1−
x
, and β-Mo
2
C was determined by adjusting the continuous pulsed Joule heating. |
---|---|
ISSN: | 2051-6347 2051-6355 2051-6355 |
DOI: | 10.1039/d4mh00225c |