Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode
Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are no...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2025-01 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Energy & environmental science |
container_volume | |
creator | Zeng, Guifang Sun, Qing Horta, Sharona Martínez-Alanis, Paulina R. Wu, Peng Li, Jing Wang, Shang Ibáñez, Maria Tian, Yanhong Ci, Lijie Cabot, Andreu |
description | Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF 3 COO) 2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF 2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn 2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs. |
doi_str_mv | 10.1039/D4EE03750B |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4EE03750B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D4EE03750B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c120t-be78c2b77c5a1a4e63195d00180834de4cef8515fd4c4eab6537b820874489433</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhC0EEqWw8As8IwVex3bsjFDCh1TEAnPkOG9oUGoX20EqG_-cVAUx3Z109wxHyDmDSwa8vLoVVQVcSbg5IDOmpMikguLwzxdlfkxOYnwHKHJQ5Yx8P_l2HEzq3RtNK6TRD59T8o7GFEabxoA0eYpuZZxFatY-bFZ-jLti31Ic0Kbgh21C2ruEoTNTq_NhvYdMjo5DCiaLyTTDBPgYcTf_6p2lxvkWT8lRZ4aIZ786J6931cviIVs-3z8urpeZZTmkrEGlbd4oZaVhRmDBWSlbAKZBc9GisNhpyWTXCivQNIXkqtE5aCWELgXnc3Kx59rgYwzY1ZvQr03Y1gzq3Xn1_3n8B1TBZRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zeng, Guifang ; Sun, Qing ; Horta, Sharona ; Martínez-Alanis, Paulina R. ; Wu, Peng ; Li, Jing ; Wang, Shang ; Ibáñez, Maria ; Tian, Yanhong ; Ci, Lijie ; Cabot, Andreu</creator><creatorcontrib>Zeng, Guifang ; Sun, Qing ; Horta, Sharona ; Martínez-Alanis, Paulina R. ; Wu, Peng ; Li, Jing ; Wang, Shang ; Ibáñez, Maria ; Tian, Yanhong ; Ci, Lijie ; Cabot, Andreu</creatorcontrib><description>Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF 3 COO) 2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF 2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn 2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D4EE03750B</identifier><language>eng</language><ispartof>Energy & environmental science, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c120t-be78c2b77c5a1a4e63195d00180834de4cef8515fd4c4eab6537b820874489433</cites><orcidid>0000-0001-5013-2843 ; 0000-0002-3259-1218 ; 0000-0003-3675-4472 ; 0000-0002-9145-7772 ; 0009-0003-0656-662X ; 0000-0002-5877-7096 ; 0000-0002-7533-3251 ; 0009-0009-9788-6859 ; 0000-0002-4540-3263 ; 0000-0002-5927-4730 ; 0000-0002-1759-105X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeng, Guifang</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Horta, Sharona</creatorcontrib><creatorcontrib>Martínez-Alanis, Paulina R.</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Shang</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><creatorcontrib>Tian, Yanhong</creatorcontrib><creatorcontrib>Ci, Lijie</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><title>Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode</title><title>Energy & environmental science</title><description>Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF 3 COO) 2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF 2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn 2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAYhC0EEqWw8As8IwVex3bsjFDCh1TEAnPkOG9oUGoX20EqG_-cVAUx3Z109wxHyDmDSwa8vLoVVQVcSbg5IDOmpMikguLwzxdlfkxOYnwHKHJQ5Yx8P_l2HEzq3RtNK6TRD59T8o7GFEabxoA0eYpuZZxFatY-bFZ-jLti31Ic0Kbgh21C2ruEoTNTq_NhvYdMjo5DCiaLyTTDBPgYcTf_6p2lxvkWT8lRZ4aIZ786J6931cviIVs-3z8urpeZZTmkrEGlbd4oZaVhRmDBWSlbAKZBc9GisNhpyWTXCivQNIXkqtE5aCWELgXnc3Kx59rgYwzY1ZvQr03Y1gzq3Xn1_3n8B1TBZRw</recordid><startdate>20250106</startdate><enddate>20250106</enddate><creator>Zeng, Guifang</creator><creator>Sun, Qing</creator><creator>Horta, Sharona</creator><creator>Martínez-Alanis, Paulina R.</creator><creator>Wu, Peng</creator><creator>Li, Jing</creator><creator>Wang, Shang</creator><creator>Ibáñez, Maria</creator><creator>Tian, Yanhong</creator><creator>Ci, Lijie</creator><creator>Cabot, Andreu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><orcidid>https://orcid.org/0000-0002-3259-1218</orcidid><orcidid>https://orcid.org/0000-0003-3675-4472</orcidid><orcidid>https://orcid.org/0000-0002-9145-7772</orcidid><orcidid>https://orcid.org/0009-0003-0656-662X</orcidid><orcidid>https://orcid.org/0000-0002-5877-7096</orcidid><orcidid>https://orcid.org/0000-0002-7533-3251</orcidid><orcidid>https://orcid.org/0009-0009-9788-6859</orcidid><orcidid>https://orcid.org/0000-0002-4540-3263</orcidid><orcidid>https://orcid.org/0000-0002-5927-4730</orcidid><orcidid>https://orcid.org/0000-0002-1759-105X</orcidid></search><sort><creationdate>20250106</creationdate><title>Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode</title><author>Zeng, Guifang ; Sun, Qing ; Horta, Sharona ; Martínez-Alanis, Paulina R. ; Wu, Peng ; Li, Jing ; Wang, Shang ; Ibáñez, Maria ; Tian, Yanhong ; Ci, Lijie ; Cabot, Andreu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c120t-be78c2b77c5a1a4e63195d00180834de4cef8515fd4c4eab6537b820874489433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Guifang</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Horta, Sharona</creatorcontrib><creatorcontrib>Martínez-Alanis, Paulina R.</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Shang</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><creatorcontrib>Tian, Yanhong</creatorcontrib><creatorcontrib>Ci, Lijie</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><collection>CrossRef</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Guifang</au><au>Sun, Qing</au><au>Horta, Sharona</au><au>Martínez-Alanis, Paulina R.</au><au>Wu, Peng</au><au>Li, Jing</au><au>Wang, Shang</au><au>Ibáñez, Maria</au><au>Tian, Yanhong</au><au>Ci, Lijie</au><au>Cabot, Andreu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode</atitle><jtitle>Energy & environmental science</jtitle><date>2025-01-06</date><risdate>2025</risdate><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF 3 COO) 2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF 2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn 2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs.</abstract><doi>10.1039/D4EE03750B</doi><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><orcidid>https://orcid.org/0000-0002-3259-1218</orcidid><orcidid>https://orcid.org/0000-0003-3675-4472</orcidid><orcidid>https://orcid.org/0000-0002-9145-7772</orcidid><orcidid>https://orcid.org/0009-0003-0656-662X</orcidid><orcidid>https://orcid.org/0000-0002-5877-7096</orcidid><orcidid>https://orcid.org/0000-0002-7533-3251</orcidid><orcidid>https://orcid.org/0009-0009-9788-6859</orcidid><orcidid>https://orcid.org/0000-0002-4540-3263</orcidid><orcidid>https://orcid.org/0000-0002-5927-4730</orcidid><orcidid>https://orcid.org/0000-0002-1759-105X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2025-01 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4EE03750B |
source | Royal Society Of Chemistry Journals 2008- |
title | Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20the%20solvation%20structure%20to%20enhance%20amorphous%20solid%20electrolyte%20interface%20formation%20for%20ultra-stable%20aqueous%20zinc%20anode&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zeng,%20Guifang&rft.date=2025-01-06&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D4EE03750B&rft_dat=%3Ccrossref%3E10_1039_D4EE03750B%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |