Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode

Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2025-01
Hauptverfasser: Zeng, Guifang, Sun, Qing, Horta, Sharona, Martínez-Alanis, Paulina R., Wu, Peng, Li, Jing, Wang, Shang, Ibáñez, Maria, Tian, Yanhong, Ci, Lijie, Cabot, Andreu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Energy & environmental science
container_volume
creator Zeng, Guifang
Sun, Qing
Horta, Sharona
Martínez-Alanis, Paulina R.
Wu, Peng
Li, Jing
Wang, Shang
Ibáñez, Maria
Tian, Yanhong
Ci, Lijie
Cabot, Andreu
description Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF 3 COO) 2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF 2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn 2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs.
doi_str_mv 10.1039/D4EE03750B
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4EE03750B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D4EE03750B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c120t-be78c2b77c5a1a4e63195d00180834de4cef8515fd4c4eab6537b820874489433</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhC0EEqWw8As8IwVex3bsjFDCh1TEAnPkOG9oUGoX20EqG_-cVAUx3Z109wxHyDmDSwa8vLoVVQVcSbg5IDOmpMikguLwzxdlfkxOYnwHKHJQ5Yx8P_l2HEzq3RtNK6TRD59T8o7GFEabxoA0eYpuZZxFatY-bFZ-jLti31Ic0Kbgh21C2ruEoTNTq_NhvYdMjo5DCiaLyTTDBPgYcTf_6p2lxvkWT8lRZ4aIZ786J6931cviIVs-3z8urpeZZTmkrEGlbd4oZaVhRmDBWSlbAKZBc9GisNhpyWTXCivQNIXkqtE5aCWELgXnc3Kx59rgYwzY1ZvQr03Y1gzq3Xn1_3n8B1TBZRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zeng, Guifang ; Sun, Qing ; Horta, Sharona ; Martínez-Alanis, Paulina R. ; Wu, Peng ; Li, Jing ; Wang, Shang ; Ibáñez, Maria ; Tian, Yanhong ; Ci, Lijie ; Cabot, Andreu</creator><creatorcontrib>Zeng, Guifang ; Sun, Qing ; Horta, Sharona ; Martínez-Alanis, Paulina R. ; Wu, Peng ; Li, Jing ; Wang, Shang ; Ibáñez, Maria ; Tian, Yanhong ; Ci, Lijie ; Cabot, Andreu</creatorcontrib><description>Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF 3 COO) 2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF 2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn 2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D4EE03750B</identifier><language>eng</language><ispartof>Energy &amp; environmental science, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c120t-be78c2b77c5a1a4e63195d00180834de4cef8515fd4c4eab6537b820874489433</cites><orcidid>0000-0001-5013-2843 ; 0000-0002-3259-1218 ; 0000-0003-3675-4472 ; 0000-0002-9145-7772 ; 0009-0003-0656-662X ; 0000-0002-5877-7096 ; 0000-0002-7533-3251 ; 0009-0009-9788-6859 ; 0000-0002-4540-3263 ; 0000-0002-5927-4730 ; 0000-0002-1759-105X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeng, Guifang</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Horta, Sharona</creatorcontrib><creatorcontrib>Martínez-Alanis, Paulina R.</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Shang</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><creatorcontrib>Tian, Yanhong</creatorcontrib><creatorcontrib>Ci, Lijie</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><title>Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode</title><title>Energy &amp; environmental science</title><description>Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF 3 COO) 2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF 2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn 2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAYhC0EEqWw8As8IwVex3bsjFDCh1TEAnPkOG9oUGoX20EqG_-cVAUx3Z109wxHyDmDSwa8vLoVVQVcSbg5IDOmpMikguLwzxdlfkxOYnwHKHJQ5Yx8P_l2HEzq3RtNK6TRD59T8o7GFEabxoA0eYpuZZxFatY-bFZ-jLti31Ic0Kbgh21C2ruEoTNTq_NhvYdMjo5DCiaLyTTDBPgYcTf_6p2lxvkWT8lRZ4aIZ786J6931cviIVs-3z8urpeZZTmkrEGlbd4oZaVhRmDBWSlbAKZBc9GisNhpyWTXCivQNIXkqtE5aCWELgXnc3Kx59rgYwzY1ZvQr03Y1gzq3Xn1_3n8B1TBZRw</recordid><startdate>20250106</startdate><enddate>20250106</enddate><creator>Zeng, Guifang</creator><creator>Sun, Qing</creator><creator>Horta, Sharona</creator><creator>Martínez-Alanis, Paulina R.</creator><creator>Wu, Peng</creator><creator>Li, Jing</creator><creator>Wang, Shang</creator><creator>Ibáñez, Maria</creator><creator>Tian, Yanhong</creator><creator>Ci, Lijie</creator><creator>Cabot, Andreu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><orcidid>https://orcid.org/0000-0002-3259-1218</orcidid><orcidid>https://orcid.org/0000-0003-3675-4472</orcidid><orcidid>https://orcid.org/0000-0002-9145-7772</orcidid><orcidid>https://orcid.org/0009-0003-0656-662X</orcidid><orcidid>https://orcid.org/0000-0002-5877-7096</orcidid><orcidid>https://orcid.org/0000-0002-7533-3251</orcidid><orcidid>https://orcid.org/0009-0009-9788-6859</orcidid><orcidid>https://orcid.org/0000-0002-4540-3263</orcidid><orcidid>https://orcid.org/0000-0002-5927-4730</orcidid><orcidid>https://orcid.org/0000-0002-1759-105X</orcidid></search><sort><creationdate>20250106</creationdate><title>Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode</title><author>Zeng, Guifang ; Sun, Qing ; Horta, Sharona ; Martínez-Alanis, Paulina R. ; Wu, Peng ; Li, Jing ; Wang, Shang ; Ibáñez, Maria ; Tian, Yanhong ; Ci, Lijie ; Cabot, Andreu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c120t-be78c2b77c5a1a4e63195d00180834de4cef8515fd4c4eab6537b820874489433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Guifang</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Horta, Sharona</creatorcontrib><creatorcontrib>Martínez-Alanis, Paulina R.</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Shang</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><creatorcontrib>Tian, Yanhong</creatorcontrib><creatorcontrib>Ci, Lijie</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Guifang</au><au>Sun, Qing</au><au>Horta, Sharona</au><au>Martínez-Alanis, Paulina R.</au><au>Wu, Peng</au><au>Li, Jing</au><au>Wang, Shang</au><au>Ibáñez, Maria</au><au>Tian, Yanhong</au><au>Ci, Lijie</au><au>Cabot, Andreu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2025-01-06</date><risdate>2025</risdate><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF 3 COO) 2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF 2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn 2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs.</abstract><doi>10.1039/D4EE03750B</doi><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><orcidid>https://orcid.org/0000-0002-3259-1218</orcidid><orcidid>https://orcid.org/0000-0003-3675-4472</orcidid><orcidid>https://orcid.org/0000-0002-9145-7772</orcidid><orcidid>https://orcid.org/0009-0003-0656-662X</orcidid><orcidid>https://orcid.org/0000-0002-5877-7096</orcidid><orcidid>https://orcid.org/0000-0002-7533-3251</orcidid><orcidid>https://orcid.org/0009-0009-9788-6859</orcidid><orcidid>https://orcid.org/0000-0002-4540-3263</orcidid><orcidid>https://orcid.org/0000-0002-5927-4730</orcidid><orcidid>https://orcid.org/0000-0002-1759-105X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2025-01
issn 1754-5692
1754-5706
language eng
recordid cdi_crossref_primary_10_1039_D4EE03750B
source Royal Society Of Chemistry Journals 2008-
title Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20the%20solvation%20structure%20to%20enhance%20amorphous%20solid%20electrolyte%20interface%20formation%20for%20ultra-stable%20aqueous%20zinc%20anode&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zeng,%20Guifang&rft.date=2025-01-06&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D4EE03750B&rft_dat=%3Ccrossref%3E10_1039_D4EE03750B%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true