Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode
Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are no...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2025-01 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF 3 COO) 2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF 2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn 2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/D4EE03750B |