Catalytic Resonance Theory: Forecasting the Flow of Programmable Catalytic Loops
Chemical transformations on catalyst surfaces occur through series and parallel reaction pathways. These complex networks and their behavior can be most simply evaluated through a three-species surface reaction loop (A* to B* to C* to A*) that is internal to the overall chemical reaction. Applicatio...
Gespeichert in:
Veröffentlicht in: | Digital discovery 2024 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical transformations on catalyst surfaces occur through series and parallel reaction pathways. These complex networks and their behavior can be most simply evaluated through a three-species surface reaction loop (A* to B* to C* to A*) that is internal to the overall chemical reaction. Application of an oscillating dynamic catalyst to this reactive loop has been shown to exhibit one of three types of behavior: (1) a positive net flux of molecules about the loop in the clockwise direction, (2) a negative net flux of molecules about the loop in the counterclockwise direction, or (3) negligible flux of molecules about the loop at the limit cycle of reaction. Three-species surface loops were simulated with microkinetic modeling to assess the reaction loop behavior resulting from a catalytic surface oscillating between two or more catalyst surface energy states. Selected input parameters for the simulations spanned 11-dimensional parameter space using 127,688 different parameter combinations. Their converged limit cycle solutions were analyzed for their loop turnover frequencies, the majority of which were found to be approximately zero. Classification and regression machine learning models were trained to predict the sign and magnitude of the loop turnover frequency and successfully performed above accessible baselines. Notably, the classification models exhibited a baseline weighted F1 score of 0.48, whereas trained models achieved weighted F1 scores of 0.91 and 0.96 when trained on the parameters used to define the simulations and derived rate constants, respectively. The trained models successfully predicted catalytic loop behavior, and interpretation of these models revealed all input parameters to be important for the prediction and performance of each model. |
---|---|
ISSN: | 2635-098X 2635-098X |
DOI: | 10.1039/D4DD00216D |