Ligand-controlled exposure of active sites on the Pd 1 Ag 14 nanocluster surface to boost electrocatalytic CO 2 reduction

Advancing catalyst design requires meticulous control of nanocatalyst selectivity at the atomic level. Here, we synthesized two Pd Ag nanoclusters: Pd Ag (PPh ) (SPh(CF ) ) and Pd Ag (P(Ph- -OMe) ) (SPh) , each with well-defined structures. Notably, in Pd Ag (P(Ph- -OMe) ) (SPh) , the detachment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2024-03, Vol.60 (23), p.3162-3165
Hauptverfasser: Ma, Along, Ren, Yonggang, Zuo, Yang, Wang, Jiawei, Huang, Shutong, Ma, Xiaoshuang, Wang, Shuxin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advancing catalyst design requires meticulous control of nanocatalyst selectivity at the atomic level. Here, we synthesized two Pd Ag nanoclusters: Pd Ag (PPh ) (SPh(CF ) ) and Pd Ag (P(Ph- -OMe) ) (SPh) , each with well-defined structures. Notably, in Pd Ag (P(Ph- -OMe) ) (SPh) , the detachment of a phosphine ligand from the top silver atom facilitates the exposure of singular active sites. This exposure significantly enhances its selectivity for the electrocatalytic reduction of CO to CO, achieving a Faraday efficiency of 83.3% at -1.3 V, markedly surpassing the 28.1% performance at -1.2 V of Pd Ag (PPh ) (SPh(CF ) ) . This work underscores the impact of atomic-level structural manipulation on enhancing nanocatalyst performance.
ISSN:1359-7345
1364-548X
DOI:10.1039/D4CC00152D