Ligand-controlled exposure of active sites on the Pd 1 Ag 14 nanocluster surface to boost electrocatalytic CO 2 reduction
Advancing catalyst design requires meticulous control of nanocatalyst selectivity at the atomic level. Here, we synthesized two Pd Ag nanoclusters: Pd Ag (PPh ) (SPh(CF ) ) and Pd Ag (P(Ph- -OMe) ) (SPh) , each with well-defined structures. Notably, in Pd Ag (P(Ph- -OMe) ) (SPh) , the detachment of...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2024-03, Vol.60 (23), p.3162-3165 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advancing catalyst design requires meticulous control of nanocatalyst selectivity at the atomic level. Here, we synthesized two Pd
Ag
nanoclusters: Pd
Ag
(PPh
)
(SPh(CF
)
)
and Pd
Ag
(P(Ph-
-OMe)
)
(SPh)
, each with well-defined structures. Notably, in Pd
Ag
(P(Ph-
-OMe)
)
(SPh)
, the detachment of a phosphine ligand from the top silver atom facilitates the exposure of singular active sites. This exposure significantly enhances its selectivity for the electrocatalytic reduction of CO
to CO, achieving a Faraday efficiency of 83.3% at -1.3 V, markedly surpassing the 28.1% performance at -1.2 V of Pd
Ag
(PPh
)
(SPh(CF
)
)
. This work underscores the impact of atomic-level structural manipulation on enhancing nanocatalyst performance. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/D4CC00152D |