Advanced HIL strategies in QLEDs: V 2 O 5 and PEDOT:PSS dual-layer for charge balance and electron leakage prevention
Quantum dot light emitting devices (QLEDs) show promise for displays, with polyethylenedioxythiophene:polystyrene (PEDOT:PSS) commonly used as a hole injection layer (HIL) due to its high conductivity and work function. However, PEDOT:PSS-based QLEDs face an energy barrier, reducing efficiency. Here...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2024-02, Vol.12 (9), p.3196-3202 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum dot light emitting devices (QLEDs) show promise for displays, with polyethylenedioxythiophene:polystyrene (PEDOT:PSS) commonly used as a hole injection layer (HIL) due to its high conductivity and work function. However, PEDOT:PSS-based QLEDs face an energy barrier, reducing efficiency. Herein, in this work, we used the rapid thermal annealing (RTA) process to improve the conductivity by controlling the RTA processing time which reduced the interfacial resistance. This improves charge balance and long-term stability by preventing electron leakage. The optimized V
2
O
5
/PEDOT:PSS-based QLED, with an EQE of 18%, CE of 77 cd A
−1
and maximum luminance of 23 242 cd m
−2
, outperforms the PEDOT:PSS-based counterpart. This highlights the strategic superiority of V
2
O
5
HIL in our QLED. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/D3TC04652D |