A spiropyran-decorated nanocoating for dynamically regulating bacteria/cell adhesion and detachment

Microorganism adhesion and the resulting contamination of the biomaterial is one of the major causes of biomedical device failure. Stimuli-responsive materials based on dynamically regulating interactions with reversible characteristics of on-off states have attracted increasing attention. Here, a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-10, Vol.11 (39), p.9525-9531
Hauptverfasser: Li, Jie, Ma, Zhuang, Li, Anran, Huang, Siyuan, Zhang, Yufei, Xue, Yun, Song, Xianhui, Zhang, Ye, Hong, Shihao, Wang, Mo, Wu, Zhongming, Zhang, Xinge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microorganism adhesion and the resulting contamination of the biomaterial is one of the major causes of biomedical device failure. Stimuli-responsive materials based on dynamically regulating interactions with reversible characteristics of on-off states have attracted increasing attention. Here, a facile self-assembled biomaterial nanocoating constructed using acidity- and photoregulated spiropyran-modified nanoparticles was developed for reversibly regulating bacteria or mammalian cell adhesion-and-detachment. The coating was formed by coating a solution of spiropyran-conjugated nanoparticles around the surface of a silica gel followed by curing and drying at 60 °C for 30 min. Importantly, efficient adhesion-and-detachment of bacteria or cells could be controlled even after 8 cycles owing to the excellent acidity- and light-switched ability. Collectively, this well-defined self-assembled nanocoating as a dynamical and reversible agent provides promising insight for the development of biomedical devices, especially for biomaterial medical coatings. A facile self-assembled biomaterial nanocoating constructed using acidity- and photoregulated spiropyran-modified nanoparticles was developed for reversibly regulating bacteria or mammalian cell adhesion-and-detachment.
ISSN:2050-750X
2050-7518
DOI:10.1039/d3tb01719b