A spiropyran-decorated nanocoating for dynamically regulating bacteria/cell adhesion and detachment
Microorganism adhesion and the resulting contamination of the biomaterial is one of the major causes of biomedical device failure. Stimuli-responsive materials based on dynamically regulating interactions with reversible characteristics of on-off states have attracted increasing attention. Here, a f...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-10, Vol.11 (39), p.9525-9531 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microorganism adhesion and the resulting contamination of the biomaterial is one of the major causes of biomedical device failure. Stimuli-responsive materials based on dynamically regulating interactions with reversible characteristics of on-off states have attracted increasing attention. Here, a facile self-assembled biomaterial nanocoating constructed using acidity- and photoregulated spiropyran-modified nanoparticles was developed for reversibly regulating bacteria or mammalian cell adhesion-and-detachment. The coating was formed by coating a solution of spiropyran-conjugated nanoparticles around the surface of a silica gel followed by curing and drying at 60 °C for 30 min. Importantly, efficient adhesion-and-detachment of bacteria or cells could be controlled even after 8 cycles owing to the excellent acidity- and light-switched ability. Collectively, this well-defined self-assembled nanocoating as a dynamical and reversible agent provides promising insight for the development of biomedical devices, especially for biomaterial medical coatings.
A facile self-assembled biomaterial nanocoating constructed using acidity- and photoregulated spiropyran-modified nanoparticles was developed for reversibly regulating bacteria or mammalian cell adhesion-and-detachment. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/d3tb01719b |