Interface defects repair of core/shell quantum dots through halide ion penetration

The interface defects of core-shell colloidal quantum dots (QDs) affect their optoelectronic properties and charge transport characteristics. However, the limited available strategies pose challenges in the comprehensive control of these interface defects. Herein, we introduce a versatile strategy t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2023-11, Vol.14 (45), p.13119-13125
Hauptverfasser: Yuan, Changwei, He, Mengda, Liao, Xinrong, Liu, Mingming, Zhang, Qinggang, Wan, Qun, Qu, Zan, Kong, Long, Li, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interface defects of core-shell colloidal quantum dots (QDs) affect their optoelectronic properties and charge transport characteristics. However, the limited available strategies pose challenges in the comprehensive control of these interface defects. Herein, we introduce a versatile strategy that effectively addresses both surface and interface defects in QDs through simple post-synthesis treatment. Through the combination of fine chemical etching methods and spectroscopic analysis, we have revealed that halogens can diffuse within the crystal structure at elevated temperatures, acting as "repairmen" to rectify oxidation and significantly reducing interface defects within the QDs. Under the guidance of this protocol, InP core/shell QDs were synthesized by a hydrofluoric acid-free method with a full width at half-maximum of 37.0 nm and an absolute quantum yield of 86%. To further underscore the generality of this strategy, we successfully applied it to CdSe core/shell QDs as well. These findings provide fundamental insights into interface defect engineering and contribute to the advancement of innovative solutions for semiconductor nanomaterials. This work first reports a versatile post-synthesis strategy that drive halogens diffuse within crystal structures at elevated temperature, acting as "repairmen" to rectify oxidation and significantly reduce interface defects within core-shell QDs.
ISSN:2041-6520
2041-6539
DOI:10.1039/d3sc04136k