Composite MAX phase/MXene/Ni electrodes with a porous 3D structure for hydrogen evolution and energy storage application
MXenes, a family of two-dimensional (2D) transition metal carbides, have been discovered as exciting candidates for various energy storage and conversion applications, including green hydrogen production by water splitting. Today, these materials mostly remain interesting objects for in-depth fundam...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-01, Vol.14 (5), p.352-369 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 5 |
container_start_page | 352 |
container_title | RSC advances |
container_volume | 14 |
creator | Sergiienko, Sergii A Lajaunie, Luc Rodríguez-Castellón, Enrique Constantinescu, Gabriel Lopes, Daniela V Shcherban, Nataliya D Calvino, José J Labrincha, João A Sofer, Zdenek Kovalevsky, Andrei V |
description | MXenes, a family of two-dimensional (2D) transition metal carbides, have been discovered as exciting candidates for various energy storage and conversion applications, including green hydrogen production by water splitting. Today, these materials mostly remain interesting objects for in-depth fundamental studies and scientific curiosity due to issues related to their preparation and environmental stability, limiting potential industrial applications. This work proposes a simple and inexpensive concept of composite electrodes composed of molybdenum- and titanium-containing MAX phases and MXene as functional materials. The concept is based on the modification of the initial MAX phase by the addition of metallic Ni, tuning Al- and carbon content and synthesis conditions, followed by fluoride-free etching under alkaline conditions. The proposed methodology allows producing a composite electrode with a well-developed 3D porous MAX phase-based structure acting as a support for electrocatalytic species, including MXene, and possessing good mechanical integrity. Electrochemical tests have shown a high electrochemical activity of such electrodes towards the hydrogen evolution reaction (HER), combined with a relatively high areal capacitance (up to 10 F cm
−2
).
The MAX phase/MXene/Ni composite with 3D porous structure prepared was assessed for energy conversion and storage application, using the hydrogen evolution reaction under alkaline conditions as a model system. |
doi_str_mv | 10.1039/d3ra07335a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3RA07335A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929058696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-16fbe6bbd010c65eb0e1df9d5931c632b41bb52cfd29570fac357df95cc6a4003</originalsourceid><addsrcrecordid>eNpdkt1rFDEUxYMottS--K4EfBFh3XxMMpMnWbZqC62CKPQtZJI7uymzk2mSqe5_b9qta9u83MD5cTjJuQi9puQjJVzNHY-G1JwL8wwdMlLJGSNSPX9wP0DHKV2RcqSgTNKX6IA3jKuqoofozzJsxpB8BnyxuMTj2iSYX1zCAPNvHkMPNsfgIOHfPq-xwWOIYUqYn-CU42TzFAF3IeL11sWwggHDTein7MOAzeBw8YmrbWFDNCvAZhx7b82t_Aq96Eyf4Ph-HqFfXz7_XJ7Ozr9_PVsuzmeWN02eUdm1INvWEUqsFNASoK5TTihOreSsrWjbCmY7x5SoSWcsF3UBhLXSVITwI_Rp5ztO7QachSFH0-sx-o2JWx2M14-Vwa_1KtxoSmolikFxeH_vEMP1BCnrjU8W-t4MUP5CM8UUEY1UsqDvnqBXYYpDeV-haF3JRtxF-rCjbAwpRej2aSjRt6XqE_5jcVfqosBvH-bfo_8qLMCbHRCT3av_t4L_BfXjqJs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917468500</pqid></control><display><type>article</type><title>Composite MAX phase/MXene/Ni electrodes with a porous 3D structure for hydrogen evolution and energy storage application</title><source>PubMed (Medline)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central Open Access</source><creator>Sergiienko, Sergii A ; Lajaunie, Luc ; Rodríguez-Castellón, Enrique ; Constantinescu, Gabriel ; Lopes, Daniela V ; Shcherban, Nataliya D ; Calvino, José J ; Labrincha, João A ; Sofer, Zdenek ; Kovalevsky, Andrei V</creator><creatorcontrib>Sergiienko, Sergii A ; Lajaunie, Luc ; Rodríguez-Castellón, Enrique ; Constantinescu, Gabriel ; Lopes, Daniela V ; Shcherban, Nataliya D ; Calvino, José J ; Labrincha, João A ; Sofer, Zdenek ; Kovalevsky, Andrei V</creatorcontrib><description>MXenes, a family of two-dimensional (2D) transition metal carbides, have been discovered as exciting candidates for various energy storage and conversion applications, including green hydrogen production by water splitting. Today, these materials mostly remain interesting objects for in-depth fundamental studies and scientific curiosity due to issues related to their preparation and environmental stability, limiting potential industrial applications. This work proposes a simple and inexpensive concept of composite electrodes composed of molybdenum- and titanium-containing MAX phases and MXene as functional materials. The concept is based on the modification of the initial MAX phase by the addition of metallic Ni, tuning Al- and carbon content and synthesis conditions, followed by fluoride-free etching under alkaline conditions. The proposed methodology allows producing a composite electrode with a well-developed 3D porous MAX phase-based structure acting as a support for electrocatalytic species, including MXene, and possessing good mechanical integrity. Electrochemical tests have shown a high electrochemical activity of such electrodes towards the hydrogen evolution reaction (HER), combined with a relatively high areal capacitance (up to 10 F cm
−2
).
The MAX phase/MXene/Ni composite with 3D porous structure prepared was assessed for energy conversion and storage application, using the hydrogen evolution reaction under alkaline conditions as a model system.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra07335a</identifier><identifier>PMID: 38239441</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbon content ; Chemistry ; Electrodes ; Energy storage ; Functional materials ; Green hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; Industrial applications ; Metal carbides ; MXenes ; Nickel ; Titanium ; Transition metals ; Water splitting</subject><ispartof>RSC advances, 2024-01, Vol.14 (5), p.352-369</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-16fbe6bbd010c65eb0e1df9d5931c632b41bb52cfd29570fac357df95cc6a4003</cites><orcidid>0000-0001-5814-9797 ; 0000-0001-8767-702X ; 0000-0003-4751-1767 ; 0000-0002-1614-1962 ; 0000-0001-6152-6784 ; 0000-0002-3849-5681 ; 0000-0002-0989-1335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38239441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sergiienko, Sergii A</creatorcontrib><creatorcontrib>Lajaunie, Luc</creatorcontrib><creatorcontrib>Rodríguez-Castellón, Enrique</creatorcontrib><creatorcontrib>Constantinescu, Gabriel</creatorcontrib><creatorcontrib>Lopes, Daniela V</creatorcontrib><creatorcontrib>Shcherban, Nataliya D</creatorcontrib><creatorcontrib>Calvino, José J</creatorcontrib><creatorcontrib>Labrincha, João A</creatorcontrib><creatorcontrib>Sofer, Zdenek</creatorcontrib><creatorcontrib>Kovalevsky, Andrei V</creatorcontrib><title>Composite MAX phase/MXene/Ni electrodes with a porous 3D structure for hydrogen evolution and energy storage application</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>MXenes, a family of two-dimensional (2D) transition metal carbides, have been discovered as exciting candidates for various energy storage and conversion applications, including green hydrogen production by water splitting. Today, these materials mostly remain interesting objects for in-depth fundamental studies and scientific curiosity due to issues related to their preparation and environmental stability, limiting potential industrial applications. This work proposes a simple and inexpensive concept of composite electrodes composed of molybdenum- and titanium-containing MAX phases and MXene as functional materials. The concept is based on the modification of the initial MAX phase by the addition of metallic Ni, tuning Al- and carbon content and synthesis conditions, followed by fluoride-free etching under alkaline conditions. The proposed methodology allows producing a composite electrode with a well-developed 3D porous MAX phase-based structure acting as a support for electrocatalytic species, including MXene, and possessing good mechanical integrity. Electrochemical tests have shown a high electrochemical activity of such electrodes towards the hydrogen evolution reaction (HER), combined with a relatively high areal capacitance (up to 10 F cm
−2
).
The MAX phase/MXene/Ni composite with 3D porous structure prepared was assessed for energy conversion and storage application, using the hydrogen evolution reaction under alkaline conditions as a model system.</description><subject>Carbon content</subject><subject>Chemistry</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Functional materials</subject><subject>Green hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Industrial applications</subject><subject>Metal carbides</subject><subject>MXenes</subject><subject>Nickel</subject><subject>Titanium</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkt1rFDEUxYMottS--K4EfBFh3XxMMpMnWbZqC62CKPQtZJI7uymzk2mSqe5_b9qta9u83MD5cTjJuQi9puQjJVzNHY-G1JwL8wwdMlLJGSNSPX9wP0DHKV2RcqSgTNKX6IA3jKuqoofozzJsxpB8BnyxuMTj2iSYX1zCAPNvHkMPNsfgIOHfPq-xwWOIYUqYn-CU42TzFAF3IeL11sWwggHDTein7MOAzeBw8YmrbWFDNCvAZhx7b82t_Aq96Eyf4Ph-HqFfXz7_XJ7Ozr9_PVsuzmeWN02eUdm1INvWEUqsFNASoK5TTihOreSsrWjbCmY7x5SoSWcsF3UBhLXSVITwI_Rp5ztO7QachSFH0-sx-o2JWx2M14-Vwa_1KtxoSmolikFxeH_vEMP1BCnrjU8W-t4MUP5CM8UUEY1UsqDvnqBXYYpDeV-haF3JRtxF-rCjbAwpRej2aSjRt6XqE_5jcVfqosBvH-bfo_8qLMCbHRCT3av_t4L_BfXjqJs</recordid><startdate>20240117</startdate><enddate>20240117</enddate><creator>Sergiienko, Sergii A</creator><creator>Lajaunie, Luc</creator><creator>Rodríguez-Castellón, Enrique</creator><creator>Constantinescu, Gabriel</creator><creator>Lopes, Daniela V</creator><creator>Shcherban, Nataliya D</creator><creator>Calvino, José J</creator><creator>Labrincha, João A</creator><creator>Sofer, Zdenek</creator><creator>Kovalevsky, Andrei V</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5814-9797</orcidid><orcidid>https://orcid.org/0000-0001-8767-702X</orcidid><orcidid>https://orcid.org/0000-0003-4751-1767</orcidid><orcidid>https://orcid.org/0000-0002-1614-1962</orcidid><orcidid>https://orcid.org/0000-0001-6152-6784</orcidid><orcidid>https://orcid.org/0000-0002-3849-5681</orcidid><orcidid>https://orcid.org/0000-0002-0989-1335</orcidid></search><sort><creationdate>20240117</creationdate><title>Composite MAX phase/MXene/Ni electrodes with a porous 3D structure for hydrogen evolution and energy storage application</title><author>Sergiienko, Sergii A ; Lajaunie, Luc ; Rodríguez-Castellón, Enrique ; Constantinescu, Gabriel ; Lopes, Daniela V ; Shcherban, Nataliya D ; Calvino, José J ; Labrincha, João A ; Sofer, Zdenek ; Kovalevsky, Andrei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-16fbe6bbd010c65eb0e1df9d5931c632b41bb52cfd29570fac357df95cc6a4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon content</topic><topic>Chemistry</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Functional materials</topic><topic>Green hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Industrial applications</topic><topic>Metal carbides</topic><topic>MXenes</topic><topic>Nickel</topic><topic>Titanium</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sergiienko, Sergii A</creatorcontrib><creatorcontrib>Lajaunie, Luc</creatorcontrib><creatorcontrib>Rodríguez-Castellón, Enrique</creatorcontrib><creatorcontrib>Constantinescu, Gabriel</creatorcontrib><creatorcontrib>Lopes, Daniela V</creatorcontrib><creatorcontrib>Shcherban, Nataliya D</creatorcontrib><creatorcontrib>Calvino, José J</creatorcontrib><creatorcontrib>Labrincha, João A</creatorcontrib><creatorcontrib>Sofer, Zdenek</creatorcontrib><creatorcontrib>Kovalevsky, Andrei V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sergiienko, Sergii A</au><au>Lajaunie, Luc</au><au>Rodríguez-Castellón, Enrique</au><au>Constantinescu, Gabriel</au><au>Lopes, Daniela V</au><au>Shcherban, Nataliya D</au><au>Calvino, José J</au><au>Labrincha, João A</au><au>Sofer, Zdenek</au><au>Kovalevsky, Andrei V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite MAX phase/MXene/Ni electrodes with a porous 3D structure for hydrogen evolution and energy storage application</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-01-17</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><spage>352</spage><epage>369</epage><pages>352-369</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>MXenes, a family of two-dimensional (2D) transition metal carbides, have been discovered as exciting candidates for various energy storage and conversion applications, including green hydrogen production by water splitting. Today, these materials mostly remain interesting objects for in-depth fundamental studies and scientific curiosity due to issues related to their preparation and environmental stability, limiting potential industrial applications. This work proposes a simple and inexpensive concept of composite electrodes composed of molybdenum- and titanium-containing MAX phases and MXene as functional materials. The concept is based on the modification of the initial MAX phase by the addition of metallic Ni, tuning Al- and carbon content and synthesis conditions, followed by fluoride-free etching under alkaline conditions. The proposed methodology allows producing a composite electrode with a well-developed 3D porous MAX phase-based structure acting as a support for electrocatalytic species, including MXene, and possessing good mechanical integrity. Electrochemical tests have shown a high electrochemical activity of such electrodes towards the hydrogen evolution reaction (HER), combined with a relatively high areal capacitance (up to 10 F cm
−2
).
The MAX phase/MXene/Ni composite with 3D porous structure prepared was assessed for energy conversion and storage application, using the hydrogen evolution reaction under alkaline conditions as a model system.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38239441</pmid><doi>10.1039/d3ra07335a</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5814-9797</orcidid><orcidid>https://orcid.org/0000-0001-8767-702X</orcidid><orcidid>https://orcid.org/0000-0003-4751-1767</orcidid><orcidid>https://orcid.org/0000-0002-1614-1962</orcidid><orcidid>https://orcid.org/0000-0001-6152-6784</orcidid><orcidid>https://orcid.org/0000-0002-3849-5681</orcidid><orcidid>https://orcid.org/0000-0002-0989-1335</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-01, Vol.14 (5), p.352-369 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3RA07335A |
source | PubMed (Medline); DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central Open Access |
subjects | Carbon content Chemistry Electrodes Energy storage Functional materials Green hydrogen Hydrogen evolution reactions Hydrogen production Industrial applications Metal carbides MXenes Nickel Titanium Transition metals Water splitting |
title | Composite MAX phase/MXene/Ni electrodes with a porous 3D structure for hydrogen evolution and energy storage application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20MAX%20phase/MXene/Ni%20electrodes%20with%20a%20porous%203D%20structure%20for%20hydrogen%20evolution%20and%20energy%20storage%20application&rft.jtitle=RSC%20advances&rft.au=Sergiienko,%20Sergii%20A&rft.date=2024-01-17&rft.volume=14&rft.issue=5&rft.spage=352&rft.epage=369&rft.pages=352-369&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra07335a&rft_dat=%3Cproquest_cross%3E2929058696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917468500&rft_id=info:pmid/38239441&rfr_iscdi=true |