Chemical transformation mechanism for blue-to-green emitting CsPbBr 3 nanocrystals

Recently, metal-halide perovskites have rapidly emerged as efficient light emitters with near-unity quantum yield and size-dependent optical and electronic properties, which have attracted considerable attention from researchers. However, the ultrafast nucleation rate of ionic perovskite counterpart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-03, Vol.16 (13), p.6507-6515
Hauptverfasser: Liu, Yuling, Yun, Rui, Li, Yue, Sun, Wenda, Zheng, Tiancheng, Huang, Qian, Zhang, Libing, Li, Xiyan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, metal-halide perovskites have rapidly emerged as efficient light emitters with near-unity quantum yield and size-dependent optical and electronic properties, which have attracted considerable attention from researchers. However, the ultrafast nucleation rate of ionic perovskite counterparts severely limits the in-depth exploration of the growth mechanism of colloidal nanocrystals (NCs). Herein, we used an inorganic ligand nitrosonium tetrafluoroborate (NOBF ) to trigger a slow post-synthesis transformation process, converting non-luminescent Cs PbBr NCs into bright green luminescent CsPbBr NCs to elucidate the concrete transformation mechanism four stages: (i) the dissociation of pristine NCs, (ii) the formation of Pb-Br intermediates, (iii) low-dimensional nanoplatelets (NPLs) and (iv) cubic CsPbBr NCs, corresponding to the blue-to-green emission process. The desorption and reorganization of organic ligands induced by NO and the involvement of BF in the ligand exchange process played pivotal roles in this dissolution-recrystallization of NCs. Moreover, controlled shape evolution from anisotropic NPLs to NCs was investigated through variations in the amount of NOBF . This further validates that additives exert a decisive role in the symmetry and growth of nanostructured perovskite crystals during phase transition based on the ligand-exchange mechanism. This finding serves as a source of inspiration for the synthesis of highly luminescent CsPbBr NCs, providing valuable insights into the chemical mechanism in post-synthesis transformation.
ISSN:2040-3364
2040-3372
DOI:10.1039/D3NR05215J