Perspectives of 2D MXene-based materials for self-powered smart gas sensors

Among the materials at the forefront of the development of gas sensors, 2D MXene-based materials have garnered attention for their exceptional properties and potential in this application. Correspondingly, their expanding significance in the domain of self-powered smart gas sensors continues to make...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials advances 2024-02, Vol.5 (4), p.144-1453
Hauptverfasser: Atkare, Sayali, Rout, Chandra Sekhar, Jagtap, Shweta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among the materials at the forefront of the development of gas sensors, 2D MXene-based materials have garnered attention for their exceptional properties and potential in this application. Correspondingly, their expanding significance in the domain of self-powered smart gas sensors continues to make a strong impression on us. This perspective paper aims to provide a comprehensive overview of the exciting developments in the use of 2D MXene-based materials for self-powered smart gas sensors. This review deals with the advantages of MXenes for gas sensor applications, explores the working principles of self-powered gas sensor devices, investigates various types of energy sources used to power these devices, examines current advances in MXene-based materials for self-powered smart gas sensors and discusses the roles of MXene-based materials both as power sources and active sensing materials in these sensors. To conclude, this review goes through the insights of the contemporary state of the field and indicates a prospective avenue for further investigation within this field of study. The review paper highlights the latest advancements in employing 2D MXenes for self-powered gas sensing applications, discussing their fundamental sensing mechanisms and evaluating their performance parameters.
ISSN:2633-5409
2633-5409
DOI:10.1039/d3ma00890h