Boosting the activity of UiO-66(Zr) by defect engineering: efficient aldol condensation of furfural and MIBK for the production of bio jet-fuel precursors
The production of jet-fuel precursors from furfural via aldol-condensation with methyl-isobutyl ketone (MIBK) over defect-engineered UiO-66(Zr) catalysts is presented. The catalysts are prepared using formic acid (FA), trifluoroacetic acid (TFA) and HCl as synthesis modulators, leading to the incorp...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2024-06, Vol.26 (12), p.7337-735 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The production of jet-fuel precursors from furfural
via
aldol-condensation with methyl-isobutyl ketone (MIBK) over defect-engineered UiO-66(Zr) catalysts is presented. The catalysts are prepared using formic acid (FA), trifluoroacetic acid (TFA) and HCl as synthesis modulators, leading to the incorporation of defects on the microcrystalline structure of the metalorganic framework (MOF) material, which dramatically boosts the catalytic performance. An extensive characterization of the modified catalysts by means of X-ray diffraction (XRD), argon adsorption isotherm, thermogravimetry (TGA), transmission electron microscopy, and FTIR spectroscopy of adsorbed acetonitrile, confirmed the incorporation of missing-linker and missing-node defects within the MOF structure, enabling the explanation of the enhancement in the catalytic process. The analysis of the reaction kinetics evidences that, working under moderate temperature conditions, conversion of furfural and selectivity to the desired adduct (FuMe) close to 100% can be achieved, avoiding the formation of degradation and bulkier compounds. Finally, despite the generation of defects within the UiO-66(Zr) structure, the resultant catalyst displays good reusability in low furfural concentration mediums.
The combination of missing-linker and missing-cluster defects within the UiO-66(Zr) MOF structure dramatically boosts the catalytic performance of the material. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/d3gc05022j |