Laser-induced reduced graphene oxide for high-performance electrochemical sensors of antipyretic drug in real samples
Laser-induced graphene (LIG) has gained dominance recently as a very sought after material for fabrication, patterning graphitic structures, and electrodes for various applications in electronics. In this study, we increase the ability of RGO-graphitized nanosheets by carefully regulating the laser...
Gespeichert in:
Veröffentlicht in: | Environmental science. Nano 2024-03, Vol.11 (3), p.951-968 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laser-induced graphene (LIG) has gained dominance recently as a very sought after material for fabrication, patterning graphitic structures, and electrodes for various applications in electronics. In this study, we increase the ability of RGO-graphitized nanosheets by carefully regulating the laser fluence. We used an advanced cutting-edge technique for direct writing with a pulse laser in an open atmosphere to reduce graphite oxide nanosheets in aqueous media. The nano-sized RGO was confirmed as being produced by converting the sp
3
structure to sp
2
reduced form. The laser-induced RGO-1-3 were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared (FTIR), powder X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Non-agglomerated and different porous nanostructures of RGO-1-3 were successfully obtained during laser irradiation. Electrochemical impedance spectroscopy (EIS) was performed and high surface-active edge reactive regions were found after laser irradiation of the RGO nanostructures, which promoted excellent electrochemical detection performance with rapid electron transfer, in a low potential window. All LI-RGO nanostructures were fabricated on GCE to determine their capacity for the precise detection of acetaminophen using CV and DPV voltametric techniques. In particular, the RGO-3/GCE fabricated electrode exhibited the lowest level of 5.2 nanomolar detection of acetaminophen with an outstanding sensitivity of 2.7271 μA Mm
−1
cm
−2
. The designed RGO-3/GCE electrode also exhibited remarkable reproducibility, selectivity, and stability. In addition, the RGO-3/GCE device was successfully investigated for the detection of an antipyretic pharmaceutical drug in river and human urine samples and showed excellent results. In the search for acetaminophen, the RGO-3/GCE fabricated device can be a low-cost and reliable RGO GCE electrode.
Laser-induced graphene (LIG) has gained dominance recently as a very sought after material for fabrication, patterning graphitic structures, and electrodes for various applications in electronics. |
---|---|
ISSN: | 2051-8153 2051-8161 |
DOI: | 10.1039/d3en00780d |