Dual-phase Ce 0.8 Sm 0.2 O 2− δ –La 0.8 Ca 0.2 Al 0.3 Fe 0.7 O 3− δ oxygen permeation hollow fiber membrane for oxy-CO 2 reforming of methane

With the growing energy demand and depletion of fossil fuels, methane (CH 4 ) conversion technologies have garnered attention to produce derivative fuels and chemicals. We propose a dual-phase and cobalt-free hollow fiber membrane (HFM) composed of Ce 0.8 Sm 0.2 O 2− δ (SDC) and La 0.8 Ca 0.2 Al 0.3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2024-04, Vol.14 (8), p.2275-2285
Hauptverfasser: Hei, Yuepeng, Wu, Shuang, Lu, Zuojun, Meng, Xiuxia, Song, Jian, Yang, Naitao, Meng, Bo, Li, Claudia, Sunarso, Jaka, Kawi, Sibudjing, Tan, Xiaoyao, Liu, Shaomin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the growing energy demand and depletion of fossil fuels, methane (CH 4 ) conversion technologies have garnered attention to produce derivative fuels and chemicals. We propose a dual-phase and cobalt-free hollow fiber membrane (HFM) composed of Ce 0.8 Sm 0.2 O 2− δ (SDC) and La 0.8 Ca 0.2 Al 0.3 Fe 0.7 O 3− δ (LCAF) for oxy-CO 2 reforming of methane (OCRM) with production of syngas and pure N 2 . At 850 °C, the SDC–LCAF HFM demonstrated an oxygen permeation flow rate of 2.01 mL min −1 with 10 mL min −1 air feed and 10–10–20 mL min −1 CH 4 –CO 2 –He permeate inlet flow rates. The SDC–LCAF membrane demonstrated excellent thermochemical stability and CO 2 resistance. When integrated with a 10 wt% Ni/SDC–LCAF catalyst, the OCRM performance of the resultant membrane reactor was achieved with high CH 4 and CO 2 conversions, and CO and H 2 selectivity of approximately 99.83%, 78.40%, 93.24%, and 83.76%, respectively. The reactor exhibited stable performance for 50 h, making it a promising solution for sustainable syngas and N 2 production.
ISSN:2044-4753
2044-4761
DOI:10.1039/D3CY01082A