Effects of electric field and light on resistivity switching of Eu 0.7 Sr 0.3 MnO 3 thin films
Based on the excellent piezoelectric properties of 0.7Pb(Mg Nb )O -0.3PbTiO (PMN-PT) single crystals, a hole-doped manganite film/PMN-PT heterostructure has been constructed to achieve electric-field and light co-control of physical properties. Here, we report the resistivity switching behavior of E...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-02, Vol.26 (6), p.4968-4974 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the excellent piezoelectric properties of 0.7Pb(Mg
Nb
)O
-0.3PbTiO
(PMN-PT) single crystals, a hole-doped manganite film/PMN-PT heterostructure has been constructed to achieve electric-field and light co-control of physical properties. Here, we report the resistivity switching behavior of Eu
Sr
MnO
/PMN-PT(111) multiferroic heterostructures under different in-plane reading currents, temperatures, light stimuli and electric fields, and discuss the underlying coupling mechanisms of resistivity change. The transition from the electric-field induced lattice strain effect to polarization current effect can be controlled effectively by decreasing the in-plane reading current at room temperature. With the decrease of temperature, the interfacial charge effect dominates over the lattice strain effect due to the reduced charge carrier density. In addition, light stimulus can lead to the delocalization of
carriers, and thus enhance the lattice strain effect and suppress the interfacial charge effect. This work helps to understand essential physics of magnetoelectric coupling and also provides a potential method to realize energy-efficient multi-field control of manganite thin films. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/D3CP05256G |