Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts

Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a compr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-11, Vol.25 (44), p.3172-3187
Hauptverfasser: Li, Le, Ye, Xintong, Xiao, Qi, Zhu, Qianyi, Hu, Ying, Han, Meijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts. A systematic review of the nanostructure engineering of Pt- and Pd-based electrocatalysts toward enhanced electrocatalytic ORR performance is summarized.
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp03522k