A novel broken-gap chemical-bonded SiC/Ti 2 CO 2 heterojunction with band to band tunneling: first-principles investigation

A broken-gap heterojunction is a bright approach for designing tunneling field-effect transistors (TFETs) due to its distinct quantum tunneling mechanisms. In this study, we investigate the electronic structure and transport characteristics of a SiC/Ti 2 CO 2 heterojunction, as well as the impacts o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-09, Vol.25 (35), p.23954-23962
Hauptverfasser: Dai, Zhuo-Ni, Sheng, Wei, Zhou, Xiao-Ying, Zhan, Jie, Xu, Ying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23962
container_issue 35
container_start_page 23954
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Dai, Zhuo-Ni
Sheng, Wei
Zhou, Xiao-Ying
Zhan, Jie
Xu, Ying
description A broken-gap heterojunction is a bright approach for designing tunneling field-effect transistors (TFETs) due to its distinct quantum tunneling mechanisms. In this study, we investigate the electronic structure and transport characteristics of a SiC/Ti 2 CO 2 heterojunction, as well as the impacts of electric field and strain on the electronic properties via density functional theory. We determine that the interfacial atoms of the heterojunction are covalently bonded, forming a type-III heterojunction with a broken-gap. There exists band-to-band tunneling (BTBT) from the valence band (VB) of SiC to the conduction band (CB) of Ti 2 CO 2 . The creation of the heterojunction also enhances the carrier mobility arising from the large elastic modulus and the decrease of deformation potential. The current–voltage ( I – V ) characteristics of the device demonstrate a pronounced negative differential resistance (NDR) effect, along with a current that is about ten times greater than that of the vdW type-III heterojunction. Moreover, the tunneling window of SiC/Ti 2 CO 2 is only slightly altered when subjected to an external electric field and vertical strain, demonstrating the remarkable stability of its type-III band alignments. Our results indicate that the SiC/Ti 2 CO 2 heterojunction is useful to construct high-performance TFETs, and also introduces new ideas to design TFETs by using type-III covalent-bond heterojunctions.
doi_str_mv 10.1039/D3CP03273F
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3CP03273F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3CP03273F</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76F-a1c39d066c71c2b6955af5854a2fafb19c2b3345eb8235058a1b0d21f7e93eb13</originalsourceid><addsrcrecordid>eNpFUF9LwzAcDKLgnL74CfIsxCVN0z--jWpVGExw7yVJf2kzu2Qk3UT88m449OXuOLjjOIRuGb1nlJezR169UZ7kvD5DE5ZmnJS0SM__dJ5doqsY15RSJhifoO85dn4PA1bBf4Ajndxi3cPGajkQ5V0LLX631WxlcYKr5QF6GCH49c7p0XqHP-3YYyVdi0d_4p1zMFjXPWBjQxzJNlin7XaAiK3bQxxtJ4_Za3Rh5BDh5sRTtKqfVtULWSyfX6v5gug8q4lkmpctzTKdM52orBRCGlGIVCZGGsXKg8l5KkAVCRdUFJIp2ibM5FByUIxP0d1vrQ4-xgCmOQzayPDVMNocX2v-X-M_l_9gPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel broken-gap chemical-bonded SiC/Ti 2 CO 2 heterojunction with band to band tunneling: first-principles investigation</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Dai, Zhuo-Ni ; Sheng, Wei ; Zhou, Xiao-Ying ; Zhan, Jie ; Xu, Ying</creator><creatorcontrib>Dai, Zhuo-Ni ; Sheng, Wei ; Zhou, Xiao-Ying ; Zhan, Jie ; Xu, Ying</creatorcontrib><description>A broken-gap heterojunction is a bright approach for designing tunneling field-effect transistors (TFETs) due to its distinct quantum tunneling mechanisms. In this study, we investigate the electronic structure and transport characteristics of a SiC/Ti 2 CO 2 heterojunction, as well as the impacts of electric field and strain on the electronic properties via density functional theory. We determine that the interfacial atoms of the heterojunction are covalently bonded, forming a type-III heterojunction with a broken-gap. There exists band-to-band tunneling (BTBT) from the valence band (VB) of SiC to the conduction band (CB) of Ti 2 CO 2 . The creation of the heterojunction also enhances the carrier mobility arising from the large elastic modulus and the decrease of deformation potential. The current–voltage ( I – V ) characteristics of the device demonstrate a pronounced negative differential resistance (NDR) effect, along with a current that is about ten times greater than that of the vdW type-III heterojunction. Moreover, the tunneling window of SiC/Ti 2 CO 2 is only slightly altered when subjected to an external electric field and vertical strain, demonstrating the remarkable stability of its type-III band alignments. Our results indicate that the SiC/Ti 2 CO 2 heterojunction is useful to construct high-performance TFETs, and also introduces new ideas to design TFETs by using type-III covalent-bond heterojunctions.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/D3CP03273F</identifier><language>eng</language><ispartof>Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (35), p.23954-23962</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76F-a1c39d066c71c2b6955af5854a2fafb19c2b3345eb8235058a1b0d21f7e93eb13</citedby><cites>FETCH-LOGICAL-c76F-a1c39d066c71c2b6955af5854a2fafb19c2b3345eb8235058a1b0d21f7e93eb13</cites><orcidid>0000-0002-6249-9383 ; 0000-0002-3963-4938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dai, Zhuo-Ni</creatorcontrib><creatorcontrib>Sheng, Wei</creatorcontrib><creatorcontrib>Zhou, Xiao-Ying</creatorcontrib><creatorcontrib>Zhan, Jie</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><title>A novel broken-gap chemical-bonded SiC/Ti 2 CO 2 heterojunction with band to band tunneling: first-principles investigation</title><title>Physical chemistry chemical physics : PCCP</title><description>A broken-gap heterojunction is a bright approach for designing tunneling field-effect transistors (TFETs) due to its distinct quantum tunneling mechanisms. In this study, we investigate the electronic structure and transport characteristics of a SiC/Ti 2 CO 2 heterojunction, as well as the impacts of electric field and strain on the electronic properties via density functional theory. We determine that the interfacial atoms of the heterojunction are covalently bonded, forming a type-III heterojunction with a broken-gap. There exists band-to-band tunneling (BTBT) from the valence band (VB) of SiC to the conduction band (CB) of Ti 2 CO 2 . The creation of the heterojunction also enhances the carrier mobility arising from the large elastic modulus and the decrease of deformation potential. The current–voltage ( I – V ) characteristics of the device demonstrate a pronounced negative differential resistance (NDR) effect, along with a current that is about ten times greater than that of the vdW type-III heterojunction. Moreover, the tunneling window of SiC/Ti 2 CO 2 is only slightly altered when subjected to an external electric field and vertical strain, demonstrating the remarkable stability of its type-III band alignments. Our results indicate that the SiC/Ti 2 CO 2 heterojunction is useful to construct high-performance TFETs, and also introduces new ideas to design TFETs by using type-III covalent-bond heterojunctions.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFUF9LwzAcDKLgnL74CfIsxCVN0z--jWpVGExw7yVJf2kzu2Qk3UT88m449OXuOLjjOIRuGb1nlJezR169UZ7kvD5DE5ZmnJS0SM__dJ5doqsY15RSJhifoO85dn4PA1bBf4Ajndxi3cPGajkQ5V0LLX631WxlcYKr5QF6GCH49c7p0XqHP-3YYyVdi0d_4p1zMFjXPWBjQxzJNlin7XaAiK3bQxxtJ4_Za3Rh5BDh5sRTtKqfVtULWSyfX6v5gug8q4lkmpctzTKdM52orBRCGlGIVCZGGsXKg8l5KkAVCRdUFJIp2ibM5FByUIxP0d1vrQ4-xgCmOQzayPDVMNocX2v-X-M_l_9gPQ</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Dai, Zhuo-Ni</creator><creator>Sheng, Wei</creator><creator>Zhou, Xiao-Ying</creator><creator>Zhan, Jie</creator><creator>Xu, Ying</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6249-9383</orcidid><orcidid>https://orcid.org/0000-0002-3963-4938</orcidid></search><sort><creationdate>20230913</creationdate><title>A novel broken-gap chemical-bonded SiC/Ti 2 CO 2 heterojunction with band to band tunneling: first-principles investigation</title><author>Dai, Zhuo-Ni ; Sheng, Wei ; Zhou, Xiao-Ying ; Zhan, Jie ; Xu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76F-a1c39d066c71c2b6955af5854a2fafb19c2b3345eb8235058a1b0d21f7e93eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Zhuo-Ni</creatorcontrib><creatorcontrib>Sheng, Wei</creatorcontrib><creatorcontrib>Zhou, Xiao-Ying</creatorcontrib><creatorcontrib>Zhan, Jie</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Zhuo-Ni</au><au>Sheng, Wei</au><au>Zhou, Xiao-Ying</au><au>Zhan, Jie</au><au>Xu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel broken-gap chemical-bonded SiC/Ti 2 CO 2 heterojunction with band to band tunneling: first-principles investigation</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-09-13</date><risdate>2023</risdate><volume>25</volume><issue>35</issue><spage>23954</spage><epage>23962</epage><pages>23954-23962</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>A broken-gap heterojunction is a bright approach for designing tunneling field-effect transistors (TFETs) due to its distinct quantum tunneling mechanisms. In this study, we investigate the electronic structure and transport characteristics of a SiC/Ti 2 CO 2 heterojunction, as well as the impacts of electric field and strain on the electronic properties via density functional theory. We determine that the interfacial atoms of the heterojunction are covalently bonded, forming a type-III heterojunction with a broken-gap. There exists band-to-band tunneling (BTBT) from the valence band (VB) of SiC to the conduction band (CB) of Ti 2 CO 2 . The creation of the heterojunction also enhances the carrier mobility arising from the large elastic modulus and the decrease of deformation potential. The current–voltage ( I – V ) characteristics of the device demonstrate a pronounced negative differential resistance (NDR) effect, along with a current that is about ten times greater than that of the vdW type-III heterojunction. Moreover, the tunneling window of SiC/Ti 2 CO 2 is only slightly altered when subjected to an external electric field and vertical strain, demonstrating the remarkable stability of its type-III band alignments. Our results indicate that the SiC/Ti 2 CO 2 heterojunction is useful to construct high-performance TFETs, and also introduces new ideas to design TFETs by using type-III covalent-bond heterojunctions.</abstract><doi>10.1039/D3CP03273F</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6249-9383</orcidid><orcidid>https://orcid.org/0000-0002-3963-4938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (35), p.23954-23962
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D3CP03273F
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title A novel broken-gap chemical-bonded SiC/Ti 2 CO 2 heterojunction with band to band tunneling: first-principles investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20broken-gap%20chemical-bonded%20SiC/Ti%202%20CO%202%20heterojunction%20with%20band%20to%20band%20tunneling:%20first-principles%20investigation&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Dai,%20Zhuo-Ni&rft.date=2023-09-13&rft.volume=25&rft.issue=35&rft.spage=23954&rft.epage=23962&rft.pages=23954-23962&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/D3CP03273F&rft_dat=%3Ccrossref%3E10_1039_D3CP03273F%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true