Organic memory devices and synaptic simulation based on indacenodithienothiophene (IDTT) copolymers with improved planarity
Utilization of organic semiconductors in memory devices presents the advantages of molecular designability and flexibility. Herein, we present the comparison of three indacenodithieno[3,2- b ]thiophene (IDTT) based π-conjugated polymers via copolymerization with an electron rich thiophene ( P1 ) and...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2022-11, Vol.1 (43), p.1664-16613 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Utilization of organic semiconductors in memory devices presents the advantages of molecular designability and flexibility. Herein, we present the comparison of three indacenodithieno[3,2-
b
]thiophene (IDTT) based π-conjugated polymers
via
copolymerization with an electron rich thiophene (
P1
) and two electron deficient co-monomers, thiazole (
P2
) and 4,4′-dihexadecanoxy-5,5′-bithiazole (
P3
). The influence of the co-monomer electronic behavior on the thermal, optical and electrochemical properties is exhaustively evaluated. The role that alkoxy substituents of
P3
play in possible non-covalent interactions improving the planarity of the polymer backbone is investigated by computational calculations and is confirmed
via
enhanced thin-film crystallinity and morphological properties. Besides, we construct organic field-effect transistors (OFETs) and three-terminal memory devices based on
P1-P3
. On account of the well-defined improved planarity, both
P3
OFET and
P3
flash memory obtain excellent performance with high mobility and a large memory window. The common synapse behaviors, including postsynaptic current under different pulse duration times and pulse voltage as well as repetitive postsynaptic current modulation, are also successfully simulated using our
P3
synaptic transistor. This research broadens the application range of IDTT-based π-conjugated polymers and is an important insight for future information storage techniques and neuromorphic computing using organic electronics.
Memory and synaptic devices based on three IDTT-based copolymers were investigated. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/d2tc03484k |