Oxygen defect engineering endows Co 3 O 4 nanosheets with advanced aluminum ion storage
Atomic-level structure modulation is an effective way to boost ionic diffusion kinetics and improve the cycling stability. To relieve the strong coulombic ion–lattice interactions originating from trivalent Al 3+ ions, herein oxygen-deficient Co 3 O 4− x porous nanosheets are fabricated via a facile...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-09, Vol.10 (35), p.18322-18332 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atomic-level structure modulation is an effective way to boost ionic diffusion kinetics and improve the cycling stability. To relieve the strong coulombic ion–lattice interactions originating from trivalent Al
3+
ions, herein oxygen-deficient Co
3
O
4−
x
porous nanosheets are fabricated
via
a facile NaBH
4
reduction strategy using a metal–organic framework template. Electrochemical kinetics analysis and theoretical calculation results reveal good pseudocapacitive property, appropriate diffusion capability and Al
3+
formation energy, corroborating fast Al
3+
ion storage/release kinetics and high Al
3+
storage capacity. Specifically, Co
3
O
4−
x
porous nanosheets exhibit a high reversible capacity of 442.3 mA h g
−1
at 1.0 A g
−1
and retain 104.2 mA h g
−1
after 1800 cycles, remarkably higher than those of the previously reported Co
3
O
4
-based cathode materials. Furthermore,
ex situ
analyses reveal the conversion reaction mechanism of the Co
3
O
4−
x
cathode, followed by its high structural stability upon extended cycling. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/D2TA04165K |