Photocapacitor integrating voltage-adjustable hybrid supercapacitor and silicon solar cell generating a Joule efficiency of 86
Photocapacitor integrating both energy harvest and storage functions into a single device is a frontier research orientation, which facilitates the efficient and sustainable utilization of green energy. However, the multi-functions in one device and structural complexity of the integrated device, pa...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2022-10, Vol.15 (1), p.4247-4258 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photocapacitor integrating both energy harvest and storage functions into a single device is a frontier research orientation, which facilitates the efficient and sustainable utilization of green energy. However, the multi-functions in one device and structural complexity of the integrated device, particularly the mismatch between energy harvest and storage units, lead to a relatively large energy loss in the energy storage and output processes. Here, we design a voltage adjustable hybrid supercapacitor (VAHSC) as an energy storage unit of a three-terminal photocapacitor. The VAHSC effectively harmonizes the energy harvest and storage units, resulting in the current, voltage, power, and energy match between both units. The optimal photocapacitor achieves a storage efficiency as high as 98.28% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. The great leap in this efficiency marks a substantial step towards the practical application of solar-charging energy storage integrated devices.
Photocapacitor integrating both energy harvest and storage functions into a single device is a frontier research orientation, which facilitates the efficient and sustainable utilization of green energy. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/d2ee01744j |